Fecha aprobación: 11/03/2019

FACULTAD DE CIENCIA Y TECNOLOGÍA ESCUELA DE INGENIERÍA MECÁNICA

1. Datos generales

Materia: DINÁMICA

Código: CTE0050

Paralelo: F

Periodo: Marzo-2019 a Julio-2019

Profesor: CORDERO MORENO DANIEL GUILLERMO

Correo dacorderom@uazuay.edu.ec

electrónico:

Vive	١٠		
1110	10		

Distribución de horas.

Docencia	Práctico	Autónomo:		Total horas
		Sistemas de tutorías	Autónomo	
4				4

Prerrequisitos:

Código: CTE0100 Materia: ESTÁTICA

2. Descripción y objetivos de la materia

La materia, partiendo de los principios fundamentales de la mecánica racional plantea el estudio de la mecánica de partículas en movimiento. Dentro del principio del Trabajo y la Energía y el principio del Impulso y la Cantidad de Movimiento analiza el desplazamiento de los cuerpos, tanto en la trayectoria rectilínea como curvilínea, con énfasis en el movimiento acelerado.

La materia de Dinámica propicia en el estudiante el desarrollo del pensamiento lógico y deductivo sobre el movimiento de los cuerpos , por lo que es muy importante para el análisis y determinación del funcionamiento de sistemas y subsistemas automotrices , especialmente está dirigida a consolidar los métodos y procedimientos para determinar los factores de movimiento y para la comprensión racional del entorno. Al finalizar la materia los estudiantes que hayan logrado estas competencias podrán generar procesos aplicables a los diversos contextos a lo largo de su vida, favoreciendo acciones responsables hacia su medio ambiente y naturalmente hacia sí mismos.

En la carrera le servirá para analizar, formular y aplicar la mecánica de Newton para comprender las leyes físicas con criterio técnico y científico, dirigiendo las aplicaciones en los diferentes problemas que se presenten en las actividades inherentes a la ingenieria mecánica automotriz.

3. Objetivos de Desarrollo Sostenible

4. Contenidos

01.01.	Introducción: Presentación del curso_ sistemas de coordenadas 2D y 3D
01.02.	Determinación del movimiento de una partícula: Posición, desplazamiento, velocidad y aceleración en el movimiento rectilíneo
01.03.	Movimiento rectilíneo: uniforme y uniformemente variado
01.04.	Movimiento de varias partículas: movimiento relativo
01.05.	Movimiento de un proyectil
01.06.	Movimiento curvilíneo
02.01.	Segunda Ley de Newton
02.02.	Cantidad de movimiento (momento lineal) de una partícula
02.03.	Ecuaciones de movimiento: componentes rectangulares
02.04.	Momento angular
	•

02.05.	Ecuaciones de movimiento: componentes radial y transversal
03.01.	Trabajo de una fuerza
03.02.	Principio de trabajo y energía
03.03.	Potencia y eficiencia
03.04.	Fuerzas conservativas
03.05.	Conservación de la energía
04.01.	Impulso y cantidad de movimiento
04.02.	Principio del impulso y la cantidad de energía
04.03.	Impactos
05.01.	Aplicación de las leyes de Newton al movimiento de sistemas de partículas
05.02.	Momento lineal y angular de un sistema de partículas
05.03.	Movimiento del centro de masa de un sistema de partículas

5. Sistema de Evaluación

Desglose de evaluación

Evidencia	Descripción	Contenidos sílabo a evaluar	Aporte	Calificación	Semana
Resolución de ejercicios, casos y otros	Prueba 1	Cinemática de partículas	APORTE 1	3	Semana: 2 (18-MAR- 19 al 23-MAR-19)
Resolución de ejercicios, casos y otros	Prueba 2	Cinemática de partículas	APORTE 1	3	Semana: 4 (01-ABR- 19 al 06-ABR-19)
Évaluación escrita	Examen 1	Cinemática de partículas	APORTE 1	4	Semana: 5 (08-ABR- 19 al 13-ABR-19)
Resolución de ejercicios, casos y otros	Prueba 3	Cinética de Partículas_Segunda Ley de Newton	APORTE 2	3	Semana: 7 (22-ABR- 19 al 27-ABR-19)
Resolución de ejercicios, casos y otros	Prueba 4	Cinética de Partículas_Segunda Ley de Newton	APORTE 2	3	Semana: 8 (29-ABR- 19 al 02-MAY-19)
Evaluación escrita	Examen 2	3. Cinética de Partículas _Principio de Trabajo y Energía, Cinética de Partículas_Segunda Ley de Newton	APORTE 2	4	Semana: 10 (13-MAY 19 al 18-MAY-19)
Resolución de ejercicios, casos y otros	Prueba 5	Cinética de Partículas Principio de Trabajo y Energía	APORTE 3	3	Semana: 11 (20-MAY- 19 al 23-MAY-19)
Resolución de ejercicios, casos y otros	Prueba 6	3. Cinética de Partículas _Principio de Trabajo y Energía, Cinética de Partículas_Principio del Impulso y la Cantidad de Movimiento	APORTE 3	3	Semana: 13 (03-JUN- 19 al 08-JUN-19)
Evaluación escrita	Examen 3	3. Cinética de Partículas _Principio de Trabajo y Energía, Cinética de Partículas_Principio del Impulso y la Cantidad de Movimiento	APORTE 3	4	Semana: 15 (17-JUN- 19 al 22-JUN-19)
Evaluación escrita	Examen final	3. Cinética de Partículas _Principio de Trabajo y Energía, Cinemática de partículas, Cinética de Partículas_Principio del Impulso y la Cantidad de Movimiento, Cinética de Partículas_Segunda Ley de Newton, Sistemas de partículas	EXAMEN	12	Semana: 17-18 (30- 06-2019 al 13-07- 2019)
Proyectos	Proyecto final	3. Cinética de Partículas _Principio de Trabajo y Energía, Cinemática de partículas, Cinética de Partículas_Principio del Impulso y la Cantidad de Movimiento, Cinética de Partículas_Segunda Ley de Newton, Sistemas de partículas	EXAMEN	8	Semana: 17-18 (30- 06-2019 al 13-07- 2019)
Evaluación escrita	Examen supletorio	3. Cinética de Partículas _Principio de Trabajo y Energía, Cinemática de partículas, Cinética de Partículas_Principio del Impulso y la Cantidad de Movimiento, Cinética de Partículas_Segunda Ley de Newton, Sistemas de partículas	SUPLETORIO	20	Semana: 20 (al)

Metodología

Criterios de evaluación

6. Referencias Bibliografía base

Libros

Autor	Editorial	Título	Año	ISBN	
Beer - Johnston	Mc. Graw Hill	Mecánica Vectorial para Ingenieros: Dinámica	2010		
Hibbeler	Pearson	Ingeniería Mecánica, Dinámica	2010		
Beer - Johnston	McGraw-Hill	Mecánica Vectorial para Ingenieros: Dinámica	2010		
Hibbeler	Pearson	Ingeniería Mecánica, Dinámica	2010		
Web					
Software					
Revista					
Revisia					
Bibliografía de apo	yo				
Libros					
Web					
Software					
Revista					

Fecha aprobación: 11/03/2019 Estado: Aprobado