Fecha aprobación: 11/03/2019

Nivel:

Distribución de horas.

FACULTAD DE CIENCIA Y TECNOLOGÍA ESCUELA DE INGENIERÍA MECÁNICA

1. Datos generales

Materia: MECÁNICA DE SOLIDOS I

Código: CTE0364

Paralelo: C

Periodo: Marzo-2019 a Julio-2019

Profesor: VITERI CERDA HERNÁN ARTURO

Correo hviteri@uazuay.edu.ec

electrónico:

Docencia	Práctico	Autónomo:		Total horas
		Sistemas de tutorías	Autónomo	
4				4

Prerrequisitos:

Ninguno

2. Descripción y objetivos de la materia

A través de la asignatura ¿Mecánica de Sólidos I¿ el alumno analiza los esfuerzos simples y deformaciones que experimenta un cuerpo sólido sujetos a solicitaciones externas, conocer las principales propiedades mecánicas de los materiales que se utilizan en la ingeniería permitiéndole dimensionar y/o seleccionar el material de un elemento mecánico de una manera segura y económica.

El dominio y aplicación de los conocimientos adquiridos le permitirá al alumno iniciarse en el campo de la mecánica de sólidos que es la base para el diseño y selección de los principales elementos mecánicos que constituyen un vehículo.

El área de la mecánica de sólidos en el curriculum de la carrera de Ingeniería Mecánica Automotriz está conformado por asignaturas de apoyo como son Estática, Dinámica, Mecánica de Sólidos I y II y materias de profesionalización como son Teoría de Mecanismos, Diseño Mecánico I y II y Mecánica Computacional, los conocimientos que el alumno adquiera le permitirá desarrollarse de una manera adecuada en el campo del mantenimiento y diseño de componentes mecánicos automotrices.

3. Objetivos de Desarrollo Sostenible

4. Contenidos

4. COITIEI	1003
1.01.	Introducción
1.02.	Análisis de fuerzas internas
1.03.	Carga axial; esfuerzo normal
1.04.	Esfuerzo cortante medio
1.05.	Carga axial; esfuerzo de aplastamiento
2.01.	Diagrama Esfuerzo ¿ Deformación
2.02.	Ley de Hooke: Deformación axial
2.03.	Esfuerzos permisibles: Factor de seguridad
2.04.	Relación de Poisson
2.05.	Elementos estaticamente indeterminados
2.06.	Esfuerzos de origen térmico

3.01.	Introducción
3.02.	Deducción de la fórmula del esfuerzo cortante
3.03.	Esfuerzo torsionante en ejes
3.04.	Diagrama de momento torsor
3.05.	Acoplamiento por medio de bridas
4.01.	Introducción
4.02.	Esfuerzo en un punto
4.03.	Variación del esfuerzo: Cálculo analítico

5. Sistema de Evaluación

Resultado de aprendizaje de la carrera relacionados con la materia

Resultado de aprendizaje de la materia

Evidencias

aa. Verifica los valores de las variables consideradas en una actividad específica en componentes y sistemas automotrices para la resolución de problemas.

> -Interpreta los diferentes esfuerzos y deformaciones de cuerpos sólidos -Evaluación escrita pertenecientes a un vehículo e instalaciones relativas a la industria automotriz -Informes -Reactivos -Resolución de ejercicios, casos y otros

ad. Soluciona las averías detectadas en los componentes y sistemas del automotor, en base al análisis lógicodeductivo, seleccionando la opción más adecuada.

> -Diagnostica y plantea soluciones y alternativas de mejora en sistemas y partes -Evaluación escrita empleadas en la industria automotriz. -Informes -Reactivos -Resolución de ejercicios, casos y otros

-Plantea soluciones y alternativas de mejora en sistemas y partes empleadas en-Evaluación escrita la industria automotriz -Informes -Reactivos

-Resolución de ejercicios, casos y otros

af. Emplea en la práctica los fundamentos sobre nuevas tecnologías para el mantenimiento y reparación de dispositivos de seguridad activa y pasiva que equipan los vehículos modernos.

> -Dimensiona elementos y dispositivos en función de las solicitaciones mecánicas y propiedades de los materiales con factores adecuados factores -Informes de seguridad.

-Evaluación escrita

-Reactivos

-Resolución de eiercicios,

casos y otros

-Selecciona los materiales adecuados y de última tecnología, en función de las-Evaluación escrita solicitaciones físicas y químicas -Informes -Reactivos

-Resolución de ejercicios,

casos y otros

Desglose de evaluación

Evidencia Descripción		Contenidos sílabo a evaluar	Aporte	Calificación	Semana	
Evaluación escrita	Prueba escrita	Esfuerzos simple	APORTE 1	5	Semana: 4 (01-ABR- 19 al 06-ABR-19)	
Resolución de ejercicios, casos y otros	Presentación de trabajos y deberes	Esfuerzos simple	APORTE 1	1	Semana: 4 (01-ABR- 19 al 06-ABR-19)	
Reactivos	Evaluación sobre propiedades de los materiales	Deformación simple	simple APORTE 2 4		Semana: 6 (15-ABR- 19 al 18-ABR-19)	
Evaluación escrita	Prueba escrita	Deformación simple	APORTE 2	5	Semana: 8 (29-ABR- 19 al 02-MAY-19)	
Resolución de ejercicios, casos y otros	Resolución de ejercicios	Deformación simple	APORTE 2	1	Semana: 8 (29-ABR- 19 al 02-MAY-19)	
Evaluación escrita	Prueba escrita	Torsión	APORTE 3	5	Semana: 12 (27-MAY- 19 al 01-JUN-19)	
Resolución de ejercicios, casos y otros	Presentación trabajos y deberes	Torsión	APORTE 3	1	Semana: 12 (27-MAY- 19 al 01-JUN-19)	
Evaluación escrita	Prueba escrita	Variación del esfuerzo	APORTE 3	5	Semana: 14 (10-JUN- 19 al 15-JUN-19)	
Informes	Trabajo de investigación	Deformación simple, Esfuerzos simple, Torsión	APORTE 3	3	Semana: 14 (10-JUN- 19 al 15-JUN-19)	
Evaluación escrita	Examen final	Deformación simple, Esfuerzos simple, Flexión, Torsión, Variación del esfuerzo	EXAMEN	20	Semana: 19-20 (14- 07-2019 al 20-07- 2019)	
Evaluación		Deformación simple, Esfuerzos simple, Flexión, Torsión, Variación del esfuerzo	SUPLETORIO	20	Semana: 20 (al)	

Metodología

Criterios de evaluación

6. Referencias Bibliografía base

Libros

Autor	Editorial	Título	Año	ISBN	
SINGER, FERDINAND &PYTEL, A	Oxford	Resistencia de materiales	2006		
Beer F., Johnston R. & Dewolf J.	Ed. Mc. Graw Hill	Mecánica de Materiales	2004		

Web

Software

Revista

Bibliografía de apoyo

Libros

Autor	Editorial	Título	Año	ISBN
GERE Y TIMOSHENKO	THOMSON EDITORES	MECANICA DE MATERIALES	2007	NO INDICA
HIBBELER,R.C	PEARSON EDUCACIÓN	MECANICA DE MATERIALES	2006	NO INDICA
JAMES GERE BARRY GOODNO	CENGAGE	MECANICA DE MATERIALES	2011	139786074813159

Web					
Software					
Revista					
	Docente	-	-	Director/Junta	
Fecha aproba	ıción: 11/03/2019				

Aprobado

Estado: