Fecha aprobación: 03/03/2020

Nivel:

Distribución de horas.

FACULTAD DE CIENCIA Y TECNOLOGÍA ESCUELA DE INGENIERÍA MECÁNICA

1. Datos generales

Materia: SISTEMAS HIDRONEUMATICOS

Código: CTE0373

Paralelo: F

Periodo: Marzo-2020 a Agosto-2020

Profesor: TORRES MOSCOSO DIEGO FRANCISCO

Correo ftorres@uazuay.edu.ec

electrónico:

Docencia	Práctico	Autór	Total horas	
		Sistemas de tutorías	Autónomo	
4				4

Prerrequisitos:

Ninguno

2. Descripción y objetivos de la materia

La materia se inicia con las generalidades de los fluidos, luego se analiza la producción, el tratamiento y la distribución del aire comprimido, esta primera parte finaliza con el estudio de las tuberías con sus materiales, racores, y juntas se ven los tipos, aplicaciones, montaje y su mantenimiento. En una segunda parte se estudiará sobre la importancia de las válvulas, describiéndolas y utilizando dibujos seccionados para un mejor entendimiento. Los actuadores neumáticos como los cilindros y los motores neumáticos merecen un análisis importante debido a que son los elementos de trabajo, es decir aquellos elementos que permiten que la energía sea transformada.

En el campo automotriz tiene importancia, debido a qué existen componentes en el vehículo que son activados mediante el aire comprimido, la neumática es una fuente de energía de fácil obtención y permite el control de máquinas y otros elementos sometidos a movimiento. La generación almacenaje y utilización del aire comprimido resultan relativamente baratos y además ofrece un índice de peligrosidad bajo en relación a otras energías como la electricidad y los combustibles gaseosos o líquidos. Esto permite que el estudiante conozca la importancia de este medio de energía y aplique a la automatización vehicular.

Toda esta planificación tiene como finalidad que el estudiante conozca la importancia del medio de energía en virtud de que existe muchos componentes en el vehículo que son activados mediante la energía neumática, los sistemas de funcionamiento y automatización desde el punto de vista ingenieril, permiten que la materia se articule con mantenimiento, diseño mecánico, auto trónica, así como materias de profesionalización.

3. Objetivos de Desarrollo Sostenible

4. Contenidos

7. COI 11C1	. Corneriacis		
01.01.	Desenvolvimiento de la técnica del aire comprimido		
01.02.	Propiedades del AC		
01.03.	Fundamentos físicos del AC		
01.04.	Ecuación del estado de los gases perfectos		
02.01.	Tipos de compresores		
02.02.	Criterios de selección		
02.03.	Volumen del aire comprimido		
02.05.	Lugar de emplazamiento		

03.01.	Filtros del AC y sus tipos
03.03.	Lubricadores del AC
03.04.	Conservación de la unidad de mantenimiento
04.01.	Dimensionado de las redes conductoras
04.02.	Redes de distribución del AC
04.03.	Material de las tuberías
04.04.	Conexiones para las tuberías metálicas
05.01.	Válvulas distribuidoras
05.02.	Simbología normalizada
05.03.	Válvulas especiales
05.04.	Tipos de accionamiento
05.05.	Esfuerzos por el accionamiento
06.01.	Elementos neumáticos de movimiento rectilíneo
06.02.	Cilindros de simple y doble efecto
06.03.	Cilindros especiales
06.04.	Tipos de fijación de los cilindros
06.05.	Cálculo de los cilindros, fuerza, carrera, velocidad
06.06.	Consumo de aire
07.01.	Señales binarias
07.02.	Señales "OR"
07.03.	Señales "AND"
07.04.	Diagrama espacio - fase y espacio - tiempo
07.05.	SImbología normalizada
08.01.	Comando de un cilindro de simple efecto, varias formas
08.02.	Comando de un cilindro de doble efecto, diferentes formas
09.01.	Elementos constitutivos de los sistemas Olehohidraulicos
09.02.	Grupos hidráulicos partes y disposicion
10.01.	Valvulas reguladoras y retencion
10.02.	Válvulas direccionales tipo y aplicaciones
10.03.	Diagrama Camino Pasos
10.04.	Circuitos básicos con hidráulica
11.01.	Disposición de un PLC
11.02.	Lógica de contactos

5. Sistema de Evaluación

Resultado de aprendizaje de la carrera relacionados con la materia

Resultado de aprendizaje de la materia

Evidencias

ah. Diseña e implementa sistemas mecánicos, hidráulicos, neumáticos, eléctricos y electrónicos de control, ejecución y seguridad en el campo automotriz.

 Aplica los principios de la mecánica de fluidos que rigen en todas las	-Evaluación escrita
instalaciones neumáticas.	-Prácticas de laboratorio
-• Calcula las pérdidas de energía y dimensionar las tuberías a través de los sistemas de transporte de fluidos.	-Evaluación escrita -Prácticas de laboratorio

Evidencias

-• Realiza el diseño e instalación de circuitos neumáticos, mediante el uso de	-Evaluación escrita
simuladores.	-Prácticas de laboratori

ai. Innova las características de funcionamiento y operación de distintos componentes y sistemas convencionales del automotor, a través de la aplicación del control y la regulación electrónica.

-• Realiza simulación de diferentes circuitos que permiten realizar un control de -Evaluación escrita sistemas hidráulicos y neumáticos -Prácticas de laboratorio

ak. Elabora planes de mantenimiento generales para talleres y servicentros, optimizando los procesos de trabajo y productividad.

Aplica los conocimientos adquiridos en cuanto a diagramas camino pasos en la ejecución de circuitos utilizados en equipos e instalaciones de talleres y servicentros automotrices
 -Evaluación escrita en la ejecución de circuitos utilizados en equipos e instalaciones de talleres y en exercican en exercica en exercica

al. Evalúa las deficiencias técnicas y de producción en una empresa automotriz, ocasionadas por la falta de planeación y organización del mantenimiento de maquinaria y equipos.

-• Aplica planes de mantenimiento sistemas neumáticos e hidráulicos de instalaciones industriales. - Evaluación escrita - Prácticas de laboratorio

Calcula tamaño de componentes para los diferentes sistemas neumáticos e -Evaluación escrita
 hidráulicos -Prácticas de laboratorio

Desglose de evaluación

Evidencia	Descripción	Contenidos sílabo a	Aporte	Calificación	Semana
		evaluar			
Evaluación escrita	Prueba	DISTRIBUCION DEL AIRE COMPRIMIDO, INTRODUCCION, PRODUCCION DEL AIRE COMPRIMIDO, TRATAMIENTO DEL AIRE COMPRIMIDO	APORTE	4	Semana: 5 (29-ABR- 20 al 04-MAY-20)
Prácticas de laboratorio	Prácticas, trabajos	DISTRIBUCION DEL AIRE COMPRIMIDO, INTRODUCCION, PRODUCCION DEL AIRE COMPRIMIDO, TRATAMIENTO DEL AIRE COMPRIMIDO	APORTE	6	Semana: 5 (29-ABR- 20 al 04-MAY-20)
Evaluación escrita	Prueba	ACTUADORES, CIRCUITOS SECUENCIALES, SIMULACION DE CIRCUITOS EN LABORATORIO, VALVULAS	APORTE	4	Semana: 10 (03-JUN- 20 al 08-JUN-20)
Prácticas de laboratorio	Trabajos, prácticas.	ACTUADORES, CIRCUITOS SECUENCIALES, SIMULACION DE CIRCUITOS EN LABORATORIO, VALVULAS	APORTE	6	Semana: 10 (03-JUN- 20 al 08-JUN-20)
Evaluación escrita	Prueba	MANEJO DE CIRCUITOS CON PLC, SISTEMAS OLEOHIDRAULICOS, VALVULAS HIDRAULICAS	APORTE	4	Semana: 14 (01-JUL- 20 al 06-JUL-20)
Prácticas de laboratorio	Prácticas, trabajos.	MANEJO DE CIRCUITOS CON PLC, SISTEMAS OLEOHIDRAULICOS, VALVULAS HIDRAULICAS	APORTE	6	Semana: 14 (01-JUL- 20 al 06-JUL-20)
Evaluación escrita	Prueba	ACTUADORES, CIRCUITOS SECUENCIALES, DISTRIBUCION DEL AIRE COMPRIMIDO, INTRODUCCION, MANEJO DE CIRCUITOS CON PLC, PRODUCCION DEL AIRE COMPRIMIDO, SIMULACION DE CIRCUITOS EN LABORATORIO, SISTEMAS OLEOHIDRAULICOS, TRATAMIENTO DEL AIRE COMPRIMIDO, VALVULAS, VALVULAS HIDRAULICAS	EXAMEN	20	Semana: 17-18 (21- 07-2020 al 03-08- 2020)
Evaluación escrita	Prueba	ACTUADORES, CIRCUITOS SECUENCIALES, DISTRIBUCION DEL AIRE COMPRIMIDO, INTRODUCCION, MANEJO DE CIRCUITOS CON PLC, PRODUCCION DEL AIRE COMPRIMIDO, SIMULACION DE CIRCUITOS EN LABORATORIO, SISTEMAS OLEOHIDRAULICOS, TRATAMIENTO DEL AIRE COMPRIMIDO, VALVULAS, VALVULAS HIDRAULICAS	SUPLETORIO	20	Semana: 19 (al)

Metodología				
Criterios de evaluació	ón			
6. Referencias Bibliografía base Libros				
Autor	Editorial	Título	Año	ISBN
Antonio Creus Sole	Alfaomega	Neumática e hidráulica	2011	
Web				
Software Revista				
Bibliografía de apoyo Libros)			
Web				
Software				
Revista				

Fecha aprobación: **03/03/2020**Estado: **Aprobado**

Docente

Página 4 de 4

Director/Junta