Fecha aprobación: 28/02/2020

Nivel:

Distribución de horas

FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN ESCUELA DE ADMINISTRACIÓN DE EMPRESAS

1. Datos generales

Materia: MATEMÁTICAS II

Código: FAM0006

Paralelo: G

Periodo: Marzo-2020 a Agosto-2020

Profesor: AUQUILLA TERAN CARLOS FEDERICO

Correo cauquill@uazuay.edu.ec

electrónico:

Distribuction de Moras:						
Docencia	Práctico	Autónomo: 96		Total horas		
		Sistemas de tutorías	Autónomo			
64	0	16	80	160		

Prerrequisitos:

Código: FAM0001 Materia: MATEMÁTICAS I

2. Descripción y objetivos de la materia

En la primera parte se estudian las funciones crecientes y decrecientes, la determinación de extremos relativos, los puntos de inflexión y la concavidad. A continuación se aplican estos conceptos en el trazo de curvas y los problemas de optimización. Se continúa luego con el estudio de las funciones exponenciales y logarítmicas, sus propiedades, sus aplicaciones y la derivación de las mismas. El curso termina con el cálculo en varias variables, las aplicaciones de las derivadas parciales y los problemas de optimización con y sin restricciones.

Al ser una asignatura básica los conocimientos que el estudiante adquiere al aprobar la misma los utiliza en los siguientes niveles para cursar asignaturas de especialización y de investigación en las carreras de; Economía, Administración, Contabilidad y Marketing.

La Matemática al ser una asignatura básica dentro de la Facultad de Ciencias de la Administración,, pretende dotar a los estudiantes de los conocimientos y destrezas necesarios para cursar otras asignaturas básicas y sobre todo las de especialización que utilizan la herramienta matemática. También se conseguirá que los estudiantes sean capaces de aplicar los conocimientos matemáticos adquiridos en la formulación y resolución de problemas en su desempeño profesional. Asimismo, los egresados estarán en capacidad de manejar y aplicar los conocimientos matemáticos con suficiencia para continuar sus estudios de postgrado y la investigación en los diferentes campos de las ciencias económicas y administrativas.

3. Objetivos de Desarrollo Sostenible

4. Contenidos

1.1	Funciones crecientes y decrecientes. Criterio de la primera derivada para determinar extremos relativos.
1.2	Concavidad y puntos de inflexión. Criterio de la Segunda derivada para determinar extremos relativos.
1.3	Aplicación en el trazado de curvas.
1.4	Extremos absolutos de una función. Elasticidad de la demanda. Utilidad máxima
1.5	Aplicaciones a problemas generales de optimización
2.1	Funciones Exponenciales: definiciones, el interés compuesto, modelos de crecimiento exponencial continuo y periódico.
2.2	Funciones Logarítmicas: definiciones, propiedades de los logaritmos, solución de ecuaciones exponenciales y logarítmicas.
2.3	Encontrar el tiempo y la tasa en problemas de crecimiento exponencial.
2.4	Derivación de funciones logarítmicas y exponenciales y aplicaciones.

3.1	Derivadas parciales de primer orden y de orden superior.	
3.2	Aplicaciones de las derivadas parciales en el área de la administración y la economía.	
3.3	Máximos y mínimos para funciones de dos variables. Problemas de Optimización.	
3.4	Optimización con restricciones: multiplicadores de Lagrange	

5. Sistema de Evaluación

Resultado de aprendizaje de la carrera relacionados con la materia Resultado de aprendizaje de la materia

Evidencias

ai. Aplicar las matemáticas al planteamiento y solución de problemas empresariales

-• Aplicar la primera y segunda derivadas para determinar máximos y mínimos -Evaluación escrita relativos, puntos de inflexión y analizar el comportamiento de las funciones por -Resolución de ejercicios, medio de sus gráficas. • Resolución de problemas de optimización y de casos y otros elasticidad de la demanda, como aplicación de los máximos y mínimos. Estudiar ejemplos reales de funciones logarítmicas y exponenciales y plantear el modelo matemático correspondiente. • Estudiar las propiedades de los logaritmos y aplicarlas en la solución de ecuaciones exponenciales y logarítmicas. • Estudiar los modelos de crecimiento exponencial periódico y continuo y sus aplicaciones en el campo de la administración y la economía. • Obtener las derivadas parciales de una función de varias variables e interpretar el resultado para el análisis marginal en economía y otras aplicaciones. • Optimizar funciones de varias variables con y sin restricciones para resolver problemas relacionados con la administración y la economía.

h. Conoce metodologías, herramientas y técnicas aplicables en el campo administrativo financiero.

- Aplicar la primera y segunda derivadas para determinar máximos y mínimos -Evaluación escrita relativos, puntos de inflexión y analizar el comportamiento de las funciones por -Resolución de ejercicios, medio de sus gráficas. • Resolución de problemas de optimización y de elasticidad de la demanda, como aplicación de los máximos y mínimos. Estudiar ejemplos reales de funciones logarítmicas y exponenciales y plantear el modelo matemático correspondiente. • Estudiar las propiedades de los logaritmos y aplicarlas en la solución de ecuaciones exponenciales y logarítmicas. • Estudiar los modelos de crecimiento exponencial periódico y continuo y sus aplicaciones en el campo de la administración y la economía. • Obtener las derivadas parciales de una función de varias variables e interpretar el resultado para el análisis marginal en economía y otras aplicaciones. • Optimizar funciones de varias variables con y sin restricciones para resolver problemas relacionados con la administración y la economía.

casos y otros

-Estudiar ejemplos reales de funciones logarítmicas y exponenciales y plantear -Evaluación escrita el modelo matemático correspondiente -Resolución de ejercicios, casos y otros -Estudiar las propiedades de los logaritmos y aplicarlas en la solución de -Evaluación escrita ecuaciones exponenciales y logarítmicas. Estudiar los modelos de crecimiento -Resolución de ejercicios, exponencial periódico y continuo y sus aplicaciones en el campo de la casos y otros administración y la economía. -Obtener las derivadas parciales de una función de varias variables e -Evaluación escrita interpretar el resultado para el análisis marginal en economía y otras -Resolución de ejercicios, aplicaciones. Optimizar funciones de varias variables con y sin restricciones casos y otros para resolver problemas relacionados con la administración y la economía. -Resolución de problemas de optimización y de elasticidad de la demanda, -Evaluación escrita como aplicación de los máximos y mínimos. -Resolución de ejercicios, casos y otros -rrespondiente. -Evaluación escrita -Resolución de ejercicios,

casos y otros MII. Propone soluciones a situaciones problemáticas aplicando el razonamiento lógico-matemático

> - Conocer las propiedades de las funciones exponenciales y logarítmicas y aplicarlas en la solución de ecuaciones. • Resolver problemas de crecimiento o-Resolución de ejercicios, decaimiento mediante modelos exponenciales y logarítmicos. • Obtener las derivadas parciales de funciones de varias variables y aplicar los resultados en el análisis marginal y otras aplicaciones. • Encontrar puntos extremos de funciones de varias variables y aplicar los resultados en la solución de problemas de optimización con o sin restricciones. • Obtener integrales indefinidas de funciones algebraicas, logarítmicas y exponenciales y aplicar a problemas con condiciones iniciales.

-Evaluación escrita casos y otros

Desglose de evaluación

Evidencia	Descripción	Contenidos sílabo a evaluar	Aporte	Calificación	Semana
Resolución de ejercicios, casos y otros	Trabajos extraescolares	APLICACIONES DE LAS DERIVADAS	APORTE	2	Semana: 4 (22-ABR- 20 al 27-ABR-20)
Evaluación escrita	Prueba	APLICACIONES DE LAS DERIVADAS	APORTE	8	Semana: 5 (29-ABR- 20 al 04-MAY-20)
Resolución de ejercicios, casos y otros	Trabajo extraescolar	FUNCIONES EXPONENCIALES Y LOGARITMICAS	APORTE	2	Semana: 9 (27-MAY- 20 al 29-MAY-20)
Evaluación escrita	Prueba	FUNCIONES EXPONENCIALES Y LOGARITMICAS	APORTE	8	Semana: 10 (03-JUN- 20 al 08-JUN-20)
Resolución de ejercicios, casos y otros	Trabajo extraescolar	FUNCIONES DE VARIAS VARIABLES	APORTE	2	Semana: 14 (01-JUL- 20 al 06-JUL-20)
Evaluación escrita	Prueba	FUNCIONES DE VARIAS VARIABLES	APORTE	8	Semana: 15 (08-JUL- 20 al 13-JUL-20)
Evaluación escrita	Examen	APLICACIONES DE LAS DERIVADAS, FUNCIONES DE VARIAS VARIABLES	EXAMEN	20	Semana: 17-18 (21- 07-2020 al 03-08- 2020)
Evaluación escrita	Examen	APLICACIONES DE LAS DERIVADAS, FUNCIONES DE VARIAS VARIABLES, FUNCIONES EXPONENCIALES Y LOGARITMICAS	SUPLETORIO	20	Semana: 20 (al)

Metodología

Descripción Tipo horas

El trabajo autónomo se dará a través de tutorías.

Autónomo

La asignatura será impartida a través de clases expositivas, con demostraciones de temas prácticos y aplicaciones a casos particulares de la materia dictada. Se utilizará ejemplos de aplicaciones a los temas tratados.

Total docencia

Criterios de evaluación

Descripción Tipo horas

Se evaluará la asistencia a la tutorías Autónomo

Se evaluara a través de trabajos en clase y extra escolares y pruebas con resolución de ejercicios.

Total docencia

6. Referencias

Bibliografía base

Libros

Autor	Editorial	Título	Año	ISBN
HAEUSSLER, ERNEST F.	Pearson	Matemáticas para Administración y Economía	2015	978-607-32-2916-6
HOFFMANN, LAWRENCE D.	Mc Graw Hill	Matemáticas aplicadas a la Administración	2014	978-0-07-353237-0
ARYA, JADISH C.	Pearson	Matemáticas aplicadas a la Administración	2009	978-607-442-302-0

Web

Software

Revista

Bibliografía de apoyo

Libros

Web

Software

Autor	Título	Url	Versión
Texas Instrumentes	Derive		6.1
Geogebra	Geogebra		2016
Revista			

Docente Director/Junta

Fecha aprobación: **28/02/2020**Estado: **Aprobado**