Fecha aprobación: 30/03/2020



Nivel:

# FACULTAD DE CIENCIA Y TECNOLOGÍA ESCUELA DE INGENIERÍA CIVIL Y GERENCIA DE CONSTRUCCIONES

## 1. Datos generales

Materia: ESTRUCTURAS II

Código: CTE0103

Paralelo: A, C

Periodo: Marzo-2020 a Agosto-2020

Profesor: FLORES SOLANO FRANCISCO XAVIER

Correo fflores@uazuay.edu.ec

electrónico:

| Distribución de horas. |          |                         |          |             |  |  |  |
|------------------------|----------|-------------------------|----------|-------------|--|--|--|
| Docencia               | Práctico | Autónomo:               |          | Total horas |  |  |  |
|                        |          | Sistemas<br>de tutorías | Autónomo |             |  |  |  |
| 4                      |          |                         |          | 4           |  |  |  |

#### Prerrequisitos:

Código: CTE0102 Materia: ESTRUCTURAS I

#### 2. Descripción y objetivos de la materia

El manejo de herramientas informáticas y normas estructurales, se articulará principalmente conceptos modernos de métodos de análisis y cálculo de estructuras en el plano y el espacio, que además han sido ampliamente desarrollados por casas comerciales de venta de software.

El estudio de Estructuras II, es parte fundamental de la formación integral de los estudiantes de ingeniería civil, se adquiere destrezas en las soluciones y estructuración de edificios y sistemas constructivos, se inician en el uso de la normativa vigente, herramientas informáticas, ingreso de modelos matemáticos, y determinación e interpretación de esfuerzos y resultados.

Estructuras II se articulan con materias afines, como la dinámica de estructuras, estructuras de hormigón armado, de acero y madera, y es la base de materias como: Obras civiles y Puentes.

#### 3. Objetivos de Desarrollo Sostenible

#### 4. Contenidos

|      | . Communicación                                                 |  |  |  |  |
|------|-----------------------------------------------------------------|--|--|--|--|
| 1,01 | Método LRFD, Combinación de Cargas                              |  |  |  |  |
| 1,03 | Introducción a Cargas de Diseño                                 |  |  |  |  |
| 1,04 | Pre-diseño de elementos estructurales                           |  |  |  |  |
| 1,05 | Modelamiento y diseño de elementos en programa comercial        |  |  |  |  |
| 1,06 | Prueba                                                          |  |  |  |  |
| 2,01 | Ecuación de Movimiento                                          |  |  |  |  |
| 2,02 | Vibración Libre con Amortiguamiento                             |  |  |  |  |
| 2,03 | Evaluación Numérica de Respuesta Dinámica (Programa Comercial)  |  |  |  |  |
| 2,04 | Concepto de Espectro de Respuesta                               |  |  |  |  |
| 2,05 | Espectros de deformación, pseudo-velocidad y pseudo-aceleración |  |  |  |  |
| 3,01 | Diseño por Capacidad                                            |  |  |  |  |
|      |                                                                 |  |  |  |  |

| 3,02                     | Configuración estructural                       |  |  |  |
|--------------------------|-------------------------------------------------|--|--|--|
| 3,03                     | Pre-diseño de elementos estructurales           |  |  |  |
| 3,04                     | Codigo Ecuatoriano Construcción (Norma Sísmica) |  |  |  |
| 3,05                     | Método Estático: Cargas Equivalentes            |  |  |  |
| 3,06                     | Ejemplo de Análisis                             |  |  |  |
| 3,07                     | Prueba                                          |  |  |  |
| 4,01                     | Historia                                        |  |  |  |
| 4,02                     | Principios de Diseño                            |  |  |  |
| 4,03                     | Ejemplo de Diseño                               |  |  |  |
| 4,04                     | Ejemplo Programa Comercial                      |  |  |  |
| 1021                     | Ejemplo en Programa Comercial                   |  |  |  |
| 1031                     | Areas Tributarias                               |  |  |  |
| 1032                     | Muertas, vivas                                  |  |  |  |
| 1034                     | Ejemplo en Programa Comercial                   |  |  |  |
| 2051                     | Espectro de Respuesta en Programa Comercial     |  |  |  |
| 2052                     | Prueba                                          |  |  |  |
| 4021                     | Columna Fuerte Viga Débil                       |  |  |  |
| 4022                     | Detallamiento de Vigas y Columnas               |  |  |  |
| 4023                     | Diseño y detallamiento                          |  |  |  |
| 5. Sistema de Evaluación |                                                 |  |  |  |

#### 5. Sistema de Evaluación

Resultado de aprendizaje de la carrera relacionados con la materia

Resultado de aprendizaje de la materia

**Evidencias** 

productos

ab. Poseer los conocimientos básicos de estructuras, geotecnia, hidráulica, construcción, sanitaria, sistemas y

| transportes                | -Desarrollar destrezas en la determinación de modelos matemáticos                                                                                            | -Evaluación escrita                                                     |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
|                            | idealizados de estructuras reales, restricciones, condiciones de frontera, vigas, pórticos, sistemas.                                                        | -Proyectos<br>-Trabajos prácticos -<br>productos                        |
| ac. Analiza<br>materiales. | , diseñar y gestionar proyectos buscando la optimización del uso de los recurso                                                                              |                                                                         |
|                            | -Modelar las obras en un medio real, su comportamiento, ante acciones externas e internas y conceptualizar el comportamiento y deformación de la estructura. | -Evaluación escrita<br>-Proyectos<br>-Trabajos prácticos -<br>productos |
| af. Emplear                | modelos, métodos de análisis y software especializado, aplicables al diseño de                                                                               | l proyecto.                                                             |
|                            | -Aplicar programas computacionales estructurales, para el análisis, cálculo y diseño de elementos estructurales y sistemas.                                  | -Evaluación escrita<br>-Proyectos<br>-Trabajos prácticos -<br>productos |
|                            | -Emplear software comerciales en base a elementos finitos, para el cálculo y diseño de estructuras.                                                          | -Evaluación escrita<br>-Proyectos<br>-Trabajos prácticos -<br>productos |
| ai. Identific              | ar y aplicar las normativas técnicas y legales pertinentes, de acuerdo al tipo de                                                                            | proyecto.                                                               |
|                            | -Incorporar en los análisis, el adecuado manejo de las normativas locales vigentes y su aplicación, acorde al tipo de proyecto                               | -Evaluación escrita<br>-Proyectos<br>-Trabajos prácticos -<br>productos |
| al. Asumir la              | necesidad de una constante actualización.                                                                                                                    | •                                                                       |
|                            | -Fomentar la necesidad de la actualización permanente, y el uso de herramientas computacionales, aplicados a la ingeniería.                                  | -Evaluación escrita<br>-Proyectos<br>-Trabajos prácticos -              |

## Desglose de evaluación

| Evidencia                            | Descripción                       | Contenidos sílabo a<br>evaluar                                                                                                                                             | Aporte     | Calificación | Semana                                           |
|--------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|--------------------------------------------------|
| Evaluación<br>escrita                | Prueba Escrita Capítulo 1         | Métodos de Diseño, Cargas<br>Gravitatorias y Combinación<br>de Cargas                                                                                                      | APORTE     | 7            | Semana: 3 (15-ABR-<br>20 al 20-ABR-20)           |
| Evaluación<br>escrita                | Prueba Escrita Capítulo 2         | Dinámica de Estructuras                                                                                                                                                    | APORTE     | 7            | Semana: 8 (20-MAY-<br>20 al 25-MAY-20)           |
| Evaluación<br>escrita                | Prueba Escrita Capítulo 3         | Diseño Sísmico                                                                                                                                                             | APORTE     | 7            | Semana: 12 (17-JUN-<br>20 al 22-JUN-20)          |
| Trabajos<br>prácticos -<br>productos | Deberes                           | Dinámica de Estructuras,<br>Diseño Sísmico, Diseño Sísmico<br>de Pórticos Especiales de<br>Hormigón, Métodos de Diseño,<br>Cargas Gravitatorias y<br>Combinación de Cargas | APORTE     | 3            | Semana: 15 (08-JUL-<br>20 al 13-JUL-20)          |
| Proyectos                            | Trabajo Final Diseño<br>Edificios | Dinámica de Estructuras, Diseño Sísmico, Diseño Sísmico de Pórticos Especiales de Hormigón, Métodos de Diseño, Cargas Gravitatorias y Combinación de Cargas                | APORTE     | 6            | Semana: 16 (15-JUL-<br>20 al 20-JUL-20)          |
| Evaluación<br>escrita                | Examen Final                      | Dinámica de Estructuras,<br>Diseño Sísmico, Diseño Sísmico<br>de Pórticos Especiales de<br>Hormigón, Métodos de Diseño,<br>Cargas Gravitatorias y<br>Combinación de Cargas | EXAMEN     | 20           | Semana: 17-18 (21-<br>07-2020 al 03-08-<br>2020) |
| Evaluación<br>escrita                | Examen Supletorio                 | Dinámica de Estructuras,<br>Diseño Sísmico, Diseño Sísmico<br>de Pórticos Especiales de<br>Hormigón, Métodos de Diseño,<br>Cargas Gravitatorias y<br>Combinación de Cargas | SUPLETORIO | 20           | Semana: 19 ( al )                                |

Metodología

Criterios de evaluación

# 6. Referencias

Bibliografía base

Libros

| Autor           | Editorial | Título                  | Año  | ISBN |  |
|-----------------|-----------|-------------------------|------|------|--|
| J. U. Escamilla | ECOE      | Análisis de Estructuras | 2000 |      |  |
| González Cueva  | LIMUSA    | Análisis estructural    | 2002 |      |  |

Web

Software

Revista

# Bibliografía de apoyo

Libros

| Autor         | Editorial                         | Título                                                | Año  | ISBN |
|---------------|-----------------------------------|-------------------------------------------------------|------|------|
| Calavera, J.  | Madrid: INTEMAC, S.A.             | Proyecto y Cálculo de Estructuras de<br>Hormigón      | 1999 |      |
| Chopra, A. K. | California: PEARSON<br>EDUCATION. | Dynamics of Structures.                               | 2014 |      |
| Salas, N.     |                                   | Diseño por capacidad en elementos de hormigón armado. | 2015 |      |

| Web           |                         |                |  |
|---------------|-------------------------|----------------|--|
|               |                         |                |  |
| Software      |                         |                |  |
|               |                         |                |  |
| Revista       |                         |                |  |
|               |                         |                |  |
|               |                         |                |  |
|               | Docente                 | Director/Junta |  |
| Fecha aprobad | ción: <b>30/03/2020</b> |                |  |

Aprobado

Estado: