Fecha aprobación: 03/05/2021

Nivel:

64

0

FACULTAD DE CIENCIA Y TECNOLOGÍA ESCUELA DE INGENIERÍA AUTOMOTRIZ

1. Datos generales

Materia: MECÁNICA DE FLUIDOS

Código: IAU0604

Paralelo: F

Periodo: Marzo-2021 a Julio-2021

Profesor: CORDERO MORENO DANIEL GUILLERMO

Correo dacorderom@uazuay.edu.ec

electrónico:

Distribuci	ón de hoi	ras.		
Docencia	Práctico	Autór	Total horo	
		Sistemas de tutorías	Autónomo	

96

160

Prerrequisitos:

Ninguno

2. Descripción y objetivos de la materia

La asignatura de mecánica de fluidos abarca el estudio de los fluidos en reposo, y en movimiento, las leyes físicas y las herramientas matemáticas que permiten su caracterización y modelación, así como algunas aplicaciones en el campo de la hidráulica y neumática.

La asignatura de mecánica de fluidos se articula directamente con las asignaturas de física, termodinámica, análisis matemático, y métodos numéricos, y sirve de base para la asignatura de hidráulica y neumática, los temas abarcados son importantes además previo al estudio de la transferencia de calor, y el diseño de máquinas.

Los contenidos presentados en la asignatura de mecánica de fluidos permiten conocer las leyes que gobiernan el comportamiento de los fluidos, su caracterización le permite al ingeniero automotriz conocer el principio de funcionamiento de componentes y sistemas que se emplean en los vehículos automóviles, diseñar elementos y sistemas hidráulicos y neumáticos, y mejorar sus prestaciones en miras de alcanzar mejores rendimientos.

3. Objetivos de Desarrollo Sostenible

4. Contenidos

1. Corner	. Contenidos				
01.01.	Introducción				
01.02.	Mecánica de fluidos-definición				
01.03.	Sistemas de unidades				
01.04.	Densidad, peso específico				
01.05.	Presión de vapor				
01.06.	Viscosidad				
01.07.	Elasticidad , capilaridad y tensión superficial				
02.01.	Presión en un punto				
02.02.	Ecuación fundamental de la estática de fluidos				
02.03.	Unidades y medidas de la presión				
02.04.	Fuerzas sobre superficies				

02.05.	Empuje y flotación
2.06	Estabilidad Estabilidad
03.01.	Clasificación de flujo
03.02.	Leyes fundamentales del movimiento en fluidos
03.03.	Teorema de transporte de Reynolds
03.04.	Ecuación de conservación de la masa
03.05.	Ecuación de la conservación de la energía
03.06.	Ecuación de Bernoulli
04.01.	Dimensiones y unidades
04.02.	Homogeneidad dimensional
04.03.	Análisis dimensional
04.04.	Método de repetición de variables y el teorema Pi de Buckingham
05.01.	Volumen de control
05.02.	Ecuación de la cantidad de movimiento
05.03.	Número de Reynlods
05.04.	Flujo laminar en tuberías
05.05.	Flujo turbulento en tuberías
05.06.	Criterios para la selección de bombas

5. Sistema de Evaluación

Resultado de aprendizaje de la carrera relacionados con la materia

Resultado de aprendizaje de la materia

Evidencias

. Modela componentes y sistemas mecánicos en programas computacionales de dibujo asistido por computador

-Emplea programas de dinámica de fluidos computacional para modelar los fenómenos asociados a la mecánica de fluidos.	-Evaluación escrita -Resolución de ejercicios, casos y otros			
a. Abstrae conocimiento y lo aplica a procesos de ingeniería.	cusos y onos			
-Reconoce las aplicaciones de los fundamentos de la mecánica de fluidos para el diseño de elementos mecánicos, hidráulicos y neumáticos	-Evaluación escrita -Resolución de ejercicios, casos y otros			
b. Aplica el razonamiento lógico - matemático para resolver problemas cotidianos y del ejercicio profesional.				

-Resuelve problemas de mecánica de fluidos, y aplica las nociones	-Evaluación escrita
conceptuales para comprender el funcionamiento de diferentes elementos y	-Resolución de ejercicios,
sistemas que utilizan los vehículos automóviles.	casos y otros

Desglose de evaluación

Evidencia	Descripción	Contenidos sílabo a	Aporte	Calificación	Semana
		evaluar			
Evaluación escrita	Examen 1	Estática de fluidos, Propiedades de los Fluidos	APORTE DESEMPEÑO	5	Semana: 6 (19-ABR- 21 al 24-ABR-21)
Evaluación escrita	Examen 2	Análisis dimensional y modelado, Conceptos de flujo de fluidos, Estática de fluidos	APORTE DESEMPEÑO	5	Semana: 12 (31-MAY- 21 al 05-JUN-21)
	APORTE CUMPLIMIENTO		APORTE CUMPLIMIENT O	10	Semana: 15 (21-JUN- 21 al 26-JUN-21)
	APORTE ASISTENCIA		APORTE ASISTENCIA	10	Semana: 15 (21-JUN- 21 al 26-JUN-21)
Resolución de ejercicios, casos y otros	Proyecto final	Análisis dimensional y modelado, Conceptos de flujo de fluidos, Estática de fluidos, Flujo en tuberías, Propiedades de los Fluidos	EXAMEN FINAL ASINCRÓNIC O	10	Semana: 17-18 (05- 07-2021 al 18-07- 2021)
Evaluación escrita	Examen final	Análisis dimensional y modelado, Conceptos de flujo de fluidos, Estática de fluidos, Flujo en tuberías, Propiedades de los Fluidos	EXAMEN FINAL SINCRÓNICO	10	Semana: 17-18 (05- 07-2021 al 18-07- 2021)
Resolución de ejercicios, casos y otros	Proyecto final	Análisis dimensional y modelado, Conceptos de flujo de fluidos, Estática de fluidos, Flujo en tuberías, Propiedades de los Fluidos	SUPLETORIO ASINCRÓNIC O	10	Semana: 17-18 (05- 07-2021 al 18-07- 2021)
Evaluación escrita	Examen final	Análisis dimensional y modelado, Conceptos de flujo de fluidos, Estática de fluidos, Flujo en tuberías, Propiedades de los Fluidos	SUPLETORIO SINCRÓNICO	10	Semana: 17-18 (05- 07-2021 al 18-07- 2021)

Metodología

Tipo horas
Tipo horas

En clase se verán las bases teóricas de los temas y se realizarán algunos ejercicios como ejemplos; sin embargo, el estudiante deberá practicar los ejercicios en su casa.

Autónomo

Se realizarán prácticas en el laboratorio para tener un entendimiento más claro de los temas vistos en clase.

Total docencia

Criterios de evaluación

Descripción Tipo horas

Se enviarán talleres y tareas que comprenderan la nota sobre 10 puntos del aporte. Losotros 10 puntos saldrán de la asistencia, misma que será tomada de los reportes deZOOM. Los últimos 10 puntos del aporte serán tomados de dos exámenes.

Autónomo

Para el examen final se considerarán 10 puntos del proyecto final y 10 puntos de unexamen escrito.

Total docencia

6. Referencias

Bibliografía base

Libros

Autor	Editorial	Título	Año	ISBN
White Frank M	Mc Graw-Hill	Mecánica de fluidos	2010	978-84-481-6603-8

Web

Software

Revista

Bibliografía de apoyo

Libros

Autor	Editorial	Título	Año	ISBN
YANUS, CENGEL	Mc. Graw Hill	MECÁNICA DE FLUIDOS. FUNDAMENTOS Y APLICACIONES	2012	978-6-07-150779-2
Mott L; Robert	Pearson Educación S.A.	Mecánica de Fluidos	2006	
Web				
Software				
Revista				
	Docente		Director/J	lunta
_				

Fecha aprobación: 03/05/2021

Estado: Aprobado