Fecha aprobación: 25/10/2021

Nivel:

Distribución de horas.

FACULTAD DE CIENCIA Y TECNOLOGÍA ESCUELA DE INGENIERÍA CIVIL Y GERENCIA DE CONSTRUCCIONES

1. Datos generales

Materia: ESTRUCTURAS DE ACERO Y MADERA

Código: CTE0101

Paralelo: A

Periodo: Septiembre-2021 a Febrero-2022

Profesor: GAMON TORRES ROBERTO

Correo rgamon@uazuay.edu.ec

electrónico:

Docencia	Práctico	Autónomo:		Total horas
		Sistemas de tutorías	Autónomo	
4				4

Prerrequisitos:

Código: CTE0102 Materia: ESTRUCTURAS I

2. Descripción y objetivos de la materia

La asignatura de estructuras de Acero y Madera es una asignatura que se inicia con la definición de las características del acero como material a emplear en la construcción de edificaciones, más adelante se expone el comportamiento que tiene el acero ante diferentes tipos de esfuerzos a los que se somete, posteriormente se pasa a emplear las expresiones que plantea el AISC para el diseño y revisión de los miembros estructurales de acero que se someten a esfuerzos axiales de tracción y compresión, flexión, cortante y combinaciones de los esfuerzos antes mencionados y finalmente se estudian las uniones que se emplean para conectar los miembros estructurales antes mencionados a través de soldadura, pernos y remaches. A continuación se pasa al material madera, en donde se estudia el comportamiento, diseño y revisión de los miembro estructurales construidos con este último material mediante las expresiones que utiliza el Manual de diseño para maderas del Grupo Andino.

La asignatura de Estructuras de Acero y Madera es importante dentro del perfil del egresado ya que en ella se podrá estudiar cómo se comportan y diseñan los miembros estructurales construidos con el material acero y con madera, materiales estos empleados comúnmente en la construcción de edificaciones.

Esta asignatura se articula con asignaturas cono son la estática, resistencia de materiales, materiales de construcción y estructuras, asignaturas estás estudiadas dentro del currículo de la carrera ya ellas sustentan toda la teoría en la cual se basa el diseño de los miembros estructurales construidos con estos materiales.

3. Objetivos de Desarrollo Sostenible

4. Contenidos

4. Comeniaes			
1.01.	Campo de aplicación de las estructuras de acero.		
1.02.	Ventajas y desventajas de las estructuras de acero.		
1.03.	Principios fundamentales a tener en cuenta en el diseño de las estructuras de acero		
2.01.	Diseño estructural. Definición, objetivos, etapas.		
2.02.	Curva tensión deformación del acero. Características principales.		
2.03.	Criterios de diseño, diseño elástico y diseño plástico, LRFD.		
2.04.	Tipos de acero.		
3.01.	Introducción.		

3.02.	Tipos de miembros adecuados para tensión.
3.03.	Estados límites para el diseño en tracción. Especificaciones de diseño.
3.04.	Ejemplos de aplicación.
4.01.	Introducción.
4.1.	Ejemplo de aplicación.
4.02.	Secciones para columnas.
4.03.	Relación de esbeltez.
4.04.	Fórmulas para columnas, especificaciones AISC.
4.05.	Pandeo elástico.
4.06.	Pandeo inelástico.
4.07.	Columnas de alma llena
4.08.	Ejemplo de aplicación.
4.09.	Columnas de alma libre
5.01.	Introducción.
5.1.	Placas de apoyo
5.02.	Esfuerzos de flexión.
5.03.	Selección de perfiles.
5.04.	Especificaciones AISC.
5.05.	Vigas sin apoyo lateral.
5.06.	Esfuerzo cortante.
5.07.	Aplastamiento horizontal del alma.
5.08.	Pandeo vertical del alma.
5.09.	Control de deflexiones.
5.11.	Ejemplos de aplicación.
6.01.	Introducción.
6.02.	Conexiones empernadas y con pasadores. Ejemplos de aplicación.
6.03.	Conexiones soldadas. Ejemplos de aplicación.
7.01.	Introducción.
7.02.	Esfuerzos Admisibles.
7.03.	Módulo de Elasticidad.
7.04.	Diseño de Elementos por Flexión.
7.05.	Procedimiento de Análisis y Diseño por Flexión.
7.06.	Requisitos de resistencia.
7.07.	Requisitos de serviciabilidad.
7.08.	Diseño de Elementos a compresión y Flexo-compresión
7.09.	Uniones empernadas.

5. Sistema de Evaluación

Resultado de aprendizaje de la carrera relacionados con la materia Resultado de aprendizaje de la materia

Evidencias

ab. Poseer los conocimientos básicos de estructuras, geotecnia, hidráulica, construcción, sanitaria,

Resultado de aprendizaje de la materia **Evidencias** sistemas y transportes que le permitan proponer soluciones a los problemas que atiende la ingeniería civil. -Poseer los conocimientos básicos de diseño y revisión de las estructuras -Evaluación escrita comunes que se le puede presentar al ingeniero civil cuando emplee el acero -Resolución de ejercicios, y/o madera como material para la construción de las estructuras. casos v otros ac. Analizar, diseñar y gestionar proyectos buscando la optimización del uso de los recursos tanto humanos como materiales. -Analizar cómo se comportan los miembros estructurales de acero ante -Evaluación escrita diferentes tipos de solicitaciones para obtener un diseño que sea resistente, -Resolución de ejercicios. estable y lo más económico posible tanto desde el punto de vista de recursos casos y otros materiales a emplear como humanos. af. Emplear modelos, métodos de análisis y software especializado, aplicables al diseño del proyecto. -Emplear los modelos matemáticos y métodos de análisis que le permitan al -Evaluación escrita ingeniero diseñar estructuras de acero y/o madera de forma tal que el diseño -Resolución de ejercicios, sea lo más racional posible. casos y otros ai. Identificar y aplicar las normativas técnicas y legales pertinentes, de acuerdo al tipo de proyecto. -Utilizar las normas generales y especificaciones de diseño que establece el -Evaluación escrita AISC (American Institute Steel Construction) para el diseño y revisión de los -Resolución de ejercicios, miembros estructurales de acero con perfiles laminados en caliente. casos y otros -Utilizar las normas generales y especificaciones de diseño que establece el el -Evaluación escrita Manual del Pacto Andino para el diseño y revisión de los miembros -Resolución de ejercicios, estructurales de madera. casos y otros al. Asumir la necesidad de una constante actualización. -Inculcar al estudiante la necesidad de una constante superación a partir de la-Evaluación escrita

actualización constante de los conceptos estudiados en la materia.

Resultado de aprendizaje de la carrera relacionados con la materia

-Resolución de ejercicios,

casos y otros

Desglose de evaluación

Evidencia	Descripción	Contenidos sílabo a evaluar	Aporte	Calificación	Semana
Evaluación escrita	Prueba escrita 1	INTRODUCCIÓN, LOS MATERIALES Y SU COMPORTAMIENTO EN LOS MIEMBROS ESTRUCTURALES	APORTE	5	Semana: 5 (18-OCT- 21 al 23-OCT-21)
Resolución de ejercicios, casos y otros	Ejercicios 1	INTRODUCCIÓN, LOS MATERIALES Y SU COMPORTAMIENTO EN LOS MIEMBROS ESTRUCTURALES	APORTE	5	Semana: 5 (18-OCT- 21 al 23-OCT-21)
Evaluación escrita	Prueba escrita 2	MIEMBROS SUJETOS A COMPRESIÓN, MIEMBROS SUJETOS A TENSIÓN.	APORTE	5	Semana: 10 (22-NOV- 21 al 27-NOV-21)
Resolución de ejercicios, casos y otros	Ejercicios 2	MIEMBROS SUJETOS A COMPRESIÓN, MIEMBROS SUJETOS A TENSIÓN.	APORTE	5	Semana: 10 (22-NOV- 21 al 27-NOV-21)
Evaluación escrita	Prueba escrita 3	CONEXIONES, MIEMBROS SUJETOS A FLEXIÓN	APORTE	5	Semana: 15 (al)
Resolución de ejercicios, casos y otros	Ejercicios 3	CONEXIONES, MIEMBROS SUJETOS A FLEXIÓN	APORTE	5	Semana: 15 (al)
Evaluación escrita	Examen escrito	CONEXIONES, INTRODUCCIÓN, LOS MATERIALES Y SU COMPORTAMIENTO EN LOS MIEMBROS ESTRUCTURALES, MIEMBROS ESTRUCTURALES DE MADERA, MIEMBROS SUJETOS A COMPRESIÓN, MIEMBROS SUJETOS A FLEXIÓN, MIEMBROS SUJETOS A TENSIÓN.	EXAMEN	10	Semana: 19-20 (23- 01-2022 al 29-01- 2022)
Resolución de ejercicios, casos y otros	Ejercicios examen	CONEXIONES, INTRODUCCIÓN, LOS MATERIALES Y SU COMPORTAMIENTO EN LOS MIEMBROS ESTRUCTURALES, MIEMBROS ESTRUCTURALES DE MADERA, MIEMBROS SUJETOS A COMPRESIÓN, MIEMBROS SUJETOS A FLEXIÓN, MIEMBROS SUJETOS A TENSIÓN.	EXAMEN	10	Semana: 19-20 (23- 01-2022 al 29-01- 2022)
Resolución de ejercicios, casos y otros	Ejercicios supletorio	CONEXIONES, INTRODUCCIÓN, LOS MATERIALES Y SU COMPORTAMIENTO EN LOS MIEMBROS ESTRUCTURALES, MIEMBROS ESTRUCTURALES DE MADERA, MIEMBROS SUJETOS A COMPRESIÓN, MIEMBROS SUJETOS A FLEXIÓN, MIEMBROS SUJETOS A TENSIÓN.	SUPLETORIO	10	Semana: 20 (02-FEB- 22 al 05-FEB-22)
Resolución de ejercicios, casos y otros	Supletorio escrito	CONEXIONES, INTRODUCCIÓN, LOS MATERIALES Y SU COMPORTAMIENTO EN LOS MIEMBROS ESTRUCTURALES, MIEMBROS ESTRUCTURALES DE MADERA, MIEMBROS SUJETOS A COMPRESIÓN, MIEMBROS SUJETOS A FLEXIÓN, MIEMBROS SUJETOS A TENSIÓN.	SUPLETORIO	10	Semana: 20 (02-FEB- 22 al 05-FEB-22)

Metodología

Criterios de evaluación

6. Referencias Bibliografía base

Libros

Autor	Editorial	Título	Año	ISBN
McCorman Jack C	Alfaomega	Diseño de Estructuras de Acero	2002	

Web		
Software		
Revista		
Bibliografía de apoyo Libros		
Web		
Software		
Revista		
Docente	_	Director/Junta
Fecha aprobación: 25/10/2021		
Estado: Aprobado		