Fecha aprobación: 04/03/2022

Nivel:

FACULTAD DE CIENCIA Y TECNOLOGÍA ESCUELA DE INGENIERÍA ELECTRÓNICA

1. Datos generales

Materia: ELECTROMAGNETISMO

Código: ELE0604

Paralelo: D

Periodo: Marzo-2022 a Agosto-2022

Profesor: CABRERA FLOR ANDRES PATRICIO

Correo

apcabrera@uazuay.edu.ec

electrónico:

Distribución de horas.							
Docencia	Práctico	Autór	Total horas				
		Sistemas de tutorías	Autónomo				
64	0		96	160			

Prerrequisitos:

Código: ELE0401 Materia: FÍSICA III

Código: ELE0502 Materia: ANÁLISIS VECTORIAL

2. Descripción y objetivos de la materia

Electromagnetismo inicia con el estudio de densidad de flujo y la Ley de Gauss, continua con el tratamiento de la energía, potencial eléctrico, gradiente de potencial, luego se analiza la corriente y la forma general de la ley de ohm, posteriormente se estudia los dieléctricos y el cálculo de la capacitancia de diferentes configuraciones, luego se utiliza las ecuaciones de Poisson y Laplace para la solución de problemas electromagnéticos.

Está asignatura relaciona las materias de Física III y Análisis Vectorial, vistos en los ciclos anteriores y con otras materias de apoyo y profesionalización, constituyendo una base para la carrera de Ingeniería Electrónica.

Electromagnetismo pertenece al eje de formación de Materias Profesionales que las carreras de ingeniería toman como parte de su formación científica y técnica. Es una cátedra que fortalece el razonamiento y las secuencias lógicas a base de desarrollar una gran cantidad de ejercicios y problemas de aplicación que permiten al estudiante obtener las bases necesarias para la comprensión, análisis y formulación de la solución de problemas relacionados con el campo eléctrico y campo magnético, herramientas básicas para su formación profesional en el campo de la Ingeniería Electrónica. Se presenta la teoría electromagnética de una forma clara y fácil de aprender, que le permitirá al estudiante enfrentar la incertidumbre, contribuyendo al razonamiento lógico.

3. Objetivos de Desarrollo Sostenible

4. Contenidos

T. COI II	r. Comeniaos		
1.1.	Ley de Coulomb		
1.2.	Campo Electrostático		
1.3.	Ley de Gauss		
1.4.	Densidad de Flujo Electrostático		
1.5.	Dipolo Eléctrico		
1.6.	Potencial Eléctrico		
2.1.	Propiedades Eléctricas de los materiales		
2.2.	Densidad de Corriente		
2.3.	Dieléctricos		

2.4.	Capacitancia
2.5.	Ecuaciones de Poisson y Laplace
3.1.	Ley de Biot-Savart
3.2.	Ley de Ampere
3.3.	Densidad de Flujo Magnético
3.4.	Potencial Magnético
3.5.	Fuerzas debido a campos Magnéticos
4.1.	Formulación
4.2.	Ondas electromagnéticas
4.3.	Línea de transmisión

5. Sistema de Evaluación

Resultado de aprendizaje de la carrera relacionados con la materia Resultado de aprendizaje de la materia

Evidencias

. Abstrae conocimiento y lo aplica a procesos de ingeniería.

-Comprender fenómenos electromagnéticos para tomarlos en cuenta en el diseño y aplicación de sistemas electrónicos

-Evaluación escrita -Resolución de ejercicios, casos y otros

. Analiza modelos matemáticos, físicos y estadísticos para la solución de problemas reales e hipotéticos en la ingeniería electrónica.

-Modelar fenómenos electromagnéticos con herramientas matemáticas

-Evaluación escrita -Resolución de ejercicios, casos y otros

. Aplica el razonamiento lógico - matemático para resolver problemas cotidianos y del ejercicio profesional.

-Obtener soluciones numéricas e interpretarlas dentro de los sistemas eléctricos -Evaluación escrita y electrónicos -Resolución de ejer

-Resolución de ejercicios, casos y otros

Desglose de evaluación

Evidencia	Descripción	Contenidos sílabo a evaluar	Aporte	Calificación	Semana
Resolución de ejercicios, casos y otros	Deberes y Tareas	Electrostática	APORTE	4	Semana: 4 (12-ABR- 22 al 14-ABR-22)
Evaluación escrita	Prueba	Electrostática	APORTE	6	Semana: 5 (18-ABR- 22 al 23-ABR-22)
Resolución de ejercicios, casos y otros	Deberes y Tareas	Campos Electrostáticos en la materia, Magnetostática	APORTE	4	Semana: 8 (09-MAY- 22 al 14-MAY-22)
Evaluación escrita	Prueba	Campos Electrostáticos en la materia, Magnetostática	APORTE	6	Semana: 9 (16-MAY- 22 al 21-MAY-22)
Resolución de ejercicios, casos y otros	Deberes y Tareas	Ecuaciones de Maxwell, Magnetostática	APORTE	4	Semana: 15 (27-JUN- 22 al 02-JUL-22)
Evaluación escrita	Prueba	Ecuaciones de Maxwell, Magnetostática	APORTE	6	Semana: 16 (04-JUL- 22 al 09-JUL-22)
Evaluación escrita	Examen de todos los contenidos	Campos Electrostáticos en la materia, Ecuaciones de Maxwell, Electrostática, Magnetostática	EXAMEN	20	Semana: 17-18 (10- 07-2022 al 23-07- 2022)
Evaluación escrita	Examen de todos los contenidos	Campos Electrostáticos en la materia, Ecuaciones de Maxwell, Electrostática, Magnetostática	SUPLETORIO	20	Semana: 19 (al)

Metodología

Software

Descripción Tipo horas Para el aprendizaje autónomo se promueve la práctica de ejercicios y comprobación de los mismos. Autónomo Además se promueve el uso de software para graficar, calcular y comprobar respuestas de ejemplos para resolución de problemas (por el profesor) y trabajos y deberes autónomos (por el alumno). Además, se promoverá el uso de software especializado y Total docencia aplicaciones online cuando sean requeridas (Wolfram Alpha, MATLAB, Octave). Los conceptos requieren explicaciones con ejemplos particulares, los cuales deben ser explicados con lenguaje sencillo y con lenguaje matemático. Es crucial una descripción de los experimentos que se han realizado por los científicos en un contexto histórico para facilitar las conclusiones a las cuales se han llegado con cada avance dentro del conocimiento. Principios: El aprendizaje efectivo debe: 1. Utilizar métodos activos. Mirar cómo se hace no es suficiente. 2. Tener aplicaciones prácticas. 3. Aceptar el error como parte del proceso aprendizaje. 4. Promover interés y curiosidad. El aprendizaje no culmina cuando se conocen todas las respuestas, sino cuando se sabe qué preguntar. Basado en los principios de Brilliant. (https://brilliant.org/principles/) Criterios de evaluación Descripción Tipo horas La evaluación consiste en comprobar las actividades autónomas a través de lecciones y Autónomo trabajos enviados previamente. La evaluación se basa en la correcta aplicación de los métodos y conceptos teóricos en problemas matemáticos. Este proceso incluye el planteamiento y modelación de Total docencia problemas utilizando conocimientos previos y adquiridos en este nivel. Por último, se considera la interpretación de resultados obtenidos de este proceso a manera de respuestas numéricas o algebraicas. 6. Referencias Bibliografía base Libros **Editorial** Título Año **ISBN Autor** Oxford University Press 2018 Sadiku, Matthew Elements of Electromagnetics 0190698616 McGraw Hill HAYT WILLIAM H. JR., TEORÍA ELECTROMAGNÉTICA. 2012 978-970-10-5620-2 **BUCK JOHN A** Griffiths, David J. CAMBRIDGE UNIVERSITY 2017 Introduction to Electrodynamics 1108420419 **PRESS** Web Software Revista Bibliografía de apoyo Libros Web

Estado:

Aprobado

Docente	Director/Junta
Fecha aprobación: 04/03/2022	