Fecha aprobación: 10/03/2022

FACULTAD DE CIENCIA Y TECNOLOGÍA ESCUELA INGENIERIA ELECTRONICA

1. Datos generales

Materia: ROBÓTICA INDUSTRIAL

Código: CTE0249

Paralelo: D

Periodo: Marzo-2022 a Agosto-2022

Profesor: TORRES SALAMEA HUGO MARCELO

Correo htorres@uazuay.edu.ec

electrónico:

Distribución de horas.						
Docencia	Práctico	Autónomo:		Total horas		
		Sistemas de tutorías	Autónomo			
4				4		

10

Nivel:

Prerrequisitos:

Código: CTE0155 Materia: INSTRUMENTACIÓN II

2. Descripción y objetivos de la materia

Elementos matemático necesarios para la caracterización de robots. Elementos cinemáticos. Principios básicos del control y manipulación de robots.

Robótica pretende brindarle al estudiante las herramientas básicas necesarias para la conceptualización, modelado y control de Robots en general y de industriales en particular.

La robótica es una disciplina multidisciplinaria. Cubre muchas ramas de la ciencia y de la ingeniería por lo que para estudiarla se utilizan conceptos de Física, Matemáticas, Geometría, que han sido acumulados por el estudiante durante la carrera.

3. Objetivos de Desarrollo Sostenible

4. Contenidos

	. Comonidos				
01.01.	Antecedentes históricos				
01.02.	Esquema general del sistema robot				
01.03.	Definición y clasificación del robot				
01.04.	Práctica 1: Presentación del Proyecto				
02.01.	Estructura mecánica de un robot				
02.02.	Transmisores y reductores				
02.03.	Actuadores				
02.04.	Sensores internos				
02.05.	Elementos Terminales				
02.06.	Práctica 2: Presentación del Estado de Arte del Proyecto				
03.01.	Representación de la posición				
03.02.	Representación de la orientación				

03.03.	Matrices de transformación homogenea
03.04.	Aplicación de los cuaternios
03.05.	Relación y Comparación entre los distintos métodos de localización espacial
03.06.	Práctica 3: Presentación del Modelado matemático y simulación de la planta
04.01.	Cinemática directa
04.02.	Cinemática inversa
04.03.	Matriz Jacobiana
04.04.	Práctica 4: Estado del Artey Modelado matemático del controlador
05.01.	Modelo dinámico de la estructura mecánica de un robot rígido
05.02.	Obtención del modelo dinámico de un robot mediante la formulación de Lagrange-Euler
05.03.	Obtención del modelo dinámico de un robot mediante la formulación de Newton-Euler
05.04.	Modelo dinámico en variables de estado
05.05.	Modelo dinámico en el espacio de la tarea
05.06.	Modelo dinámico de los actuadores

5. Sistema de Evaluación

Resultado de aprendizaje de la carrera relacionados con la materia

Resultado de aprendizaje de la materia

Evidencias

ad. Formula y resuelve problemas mediante el razonamiento y la aplicación de principios matemáticos para ingeniería electrónica

> -El estudiante definirá matemáticamente el comportamiento de un robot industrial. El estudiante encontrará soluciones a problemas específicos en el uso-Investigaciones

-Evaluación escrita

-Proyectos -Prácticas de laboratorio

ai. Aplica lógica algorítmica en el análisis y solución de problemas en base los fundamentos de la programación

-El estudiante desarrollará aplicaciones informáticas para caracterizar el comportamiento de un robot.

-Evaluación escrita

-Investigaciones

-Proyectos

-Prácticas de laboratorio

Desglose de evaluación

Evidencia	Descripción	Contenidos sílabo a evaluar	Aporte	Calificación	Semana
Evaluación escrita	Sobre el capítulo 1 y 2	INTODUCCIÓN A LA ROBÓTICA, MORFOLOGIA DEL ROBOT	APORTE	7	Semana: 4 (12-ABR- 22 al 14-ABR-22)
Investigaciones	Se realizará una investigación sobre el capítulo 2	MORFOLOGIA DEL ROBOT	APORTE	3	Semana: 4 (12-ABR- 22 al 14-ABR-22)
Evaluación escrita	Sobre el capítulo 3	HERRAMIENTAS MATEMÁTICAS PARA LA LOCALIZACIÓN ESPACIAL	APORTE	6	Semana: 9 (16-MAY- 22 al 21-MAY-22)
Prácticas de laboratorio	Se evaluará los informes y las prácticas realizadas en el capítulo 3	HERRAMIENTAS MATEMÁTICAS PARA LA LOCALIZACIÓN ESPACIAL	APORTE	4	Semana: 9 (16-MAY- 22 al 21-MAY-22)
Evaluación escrita	Sobre el capítulo 4	CINEMÁTICA DEL ROBOT	APORTE	6	Semana: 14 (20-JUN- 22 al 25-JUN-22)
	Se evaluará los informes y las prácticas realizadas en el capítulo 4	CINEMÁTICA DEL ROBOT	APORTE	4	Semana: 14 (20-JUN- 22 al 25-JUN-22)
Evaluación escrita	Sobre todos los contenidos de la asignatura	CINEMÁTICA DEL ROBOT, DINÁMICA DEL ROBOT, HERRAMIENTAS MATEMÁTICAS PARA LA LOCALIZACIÓN ESPACIAL, INTODUCCIÓN A LA ROBÓTICA, MORFOLOGIA DEL ROBOT	EXAMEN	10	Semana: 17-18 (10- 07-2022 al 23-07- 2022)
Proyectos	Sobre todos los contenidos de la asignatura	CINEMÁTICA DEL ROBOT, DINÁMICA DEL ROBOT, HERRAMIENTAS MATEMÁTICAS PARA LA LOCALIZACIÓN ESPACIAL, INTODUCCIÓN A LA ROBÓTICA, MORFOLOGIA DEL ROBOT	EXAMEN	10	Semana: 17-18 (10- 07-2022 al 23-07- 2022)
Evaluación escrita	Sobre todos los contenidos de la asignatura	CINEMÁTICA DEL ROBOT, DINÁMICA DEL ROBOT, HERRAMIENTAS MATEMÁTICAS PARA LA LOCALIZACIÓN ESPACIAL, INTODUCCIÓN A LA ROBÓTICA, MORFOLOGIA DEL ROBOT	SUPLETORIO	20	Semana: 19 (al)

Metodología

Criterios de evaluación

6. Referencias Bibliografía base

Libros

Autor	Editorial	Título	Año	ISBN
Ollero Baturone Anibal	Marcombo S.A.	Robótica Manipuladores y Robots Móviles	2001	
José María Angulo Usategui	Madrid : Paraninfo	Guía fácil de robótica	1986	
Antonio Barrientos, Luis Felipe Peñin, Carlos Balaguer, Rafael Araci	McGraw Hill	Fundamentos de Robótica	2007	

Web

Software

Revista

Web

Autor	Título	Url	
Subir Kumar Saha	Introducción a la robótica	https://elibro.net/es/lc/uazuay/titulos/36580?fs_q=Rob%C3%B3tica&prev=fs	
Torres Vargas, Libia Zoraida Introducción a la robótica		https://elibro.net/es/lc/uazuay/titulos/128561?fs_q=Rob%C3%B3tica&prev=fs	
Daniel Audí Piera	Cómo y cuándo aplicar un robot indus	trial https://elibro.net/es/Ic/uazuay/titulos/45841?fs_q=Rob%C3%B3tica&prev=fs	
Software			
Autor	Título Url	Versión	
MathWorks	MatLab y Simulink	2015-2020	
Revista			

Docente Director/Junta

Fecha aprobación: 10/03/2022 Estado: Aprobado