Fecha aprobación: 09/09/2022

FACULTAD DE CIENCIA Y TECNOLOGÍA ESCUELA DE INGENIERÍA ELECTRÓNICA

1. Datos generales

Materia: CONTROL DE PROCESOS

Código: ELE0903

Paralelo:

Periodo: Septiembre-2022 a Febrero-2023
Profesor: TORRES SALAMEA HUGO MARCELO

Correo htorres@uazuay.edu.ec

electrónico:

Nivel:		9
Distribución	de	horas.

Docencia	Práctico	Autónomo: 16		Total horas
		Sistemas de tutorías	Autónomo	
32	32		16	80

Prerrequisitos:

Código: ELE0803 Materia: INSTRUMENTACIÓN INDUSTRIAL

2. Descripción y objetivos de la materia

Los tópicos que se pretenden cubrir en esta materia están relacionados con los sistemas de control a un nivel medio, orientado al análisis de estabilidad, observación del comportamiento del sistema (obsevability) y la capacidad de realizar su control (controlability) de los sistemas.

Esta materia continúa los conceptos revisados en Teoría de Control Moderno y proporciona conocimientos que pueden utilizarse en otras ramas del conocimiento como telecomunicaciones o robótica.

Control de Procesos estudia el control de sistemas en el más amplio sentido de la palabra. Por lo tanto le brinda al profesional las herramientas para conceptualizar, modelar matemáticamente y estudiar sistemas. Un Ingeniero Electrónico necesita tener conocimientos de Sistemas de Control, ya que su quehacer profesional muy probablemente estará vinculado al diseño, administración o gestión de estos sistemas.

3. Objetivos de Desarrollo Sostenible

4. Contenidos

01.01.	Introducción
01.01.	
01.02.	Estructura PID
01.03.	Métodos cl ásicos de ajuste de Ziegler and Nichols
01.04.	Analisis Estático de los Sistemas Realimentados
01.05.	Modificación de los esquemas de control PID
01.06.	Control con 2 grados de libertad
01.07. A	Asignación de polos
01.08. P	Practica sobre controladores PID

02.01.	Introducción a la instrumentación y normas
02.02.	Tipos de sensores
02.03.	Actuadores de control
02.04.	Tópicos de control asistidos por computadora
02.05.	Instrumentos industriales
02.06.	Práctica sobre instrumentación industrial
03.01.	Introducción a las redes de comunicación industrial
03.02.	Sistemas industriales de control
03.03.	La pirámide CIM
03.04.	Redes de comunicación industrial
03.05.	Redes LAN industriales
03.06.	Panorámica de los bus de campo
03.07.	Práctica de comunicaciones industriales
04.01.	Introducción
04.02.	Descripción general
04.03.	Características
04.04.	Arquitectura
04.05.	Módulos
04.06.	Tecnología de comunicación entre aplicaciones
04.07.	Práctica: Aplicación de sistemas SCADA con INTOUCH
04.08.	Práctica Final

5. Sistema de Evaluación

Resultado de aprendizaje de la carrera relacionados con la materia

Resultado de aprendizaje de la materia

Evidencias

. Conoce los fundamentos teóricos, tecnológicos, prácticos y científicos para desarrollo de proyectos electrónicos en las áreas de control, telecomunicaciones, energía renovable y biomédica.

-Es capaz de caracterizar un sistema y plantear su solución.

-Evaluación escrita

-Investigaciones

-Proyectos

-Prácticas de laboratorio

. Desarrolla soluciones para la implementación de sistemas electrónicos aplicados a diferentes áreas como: la automatización industrial, la electrónica médica, las telecomunicaciones y las energías renovables.

-Desarrolla aplicaciones de software para analizar sistemas de control. Utiliza software libre (o comercial) para encontrar los resultados y analizar los resultados del comportamiento de los sistemas.

-Evaluación escrita

-Investigaciones

-Proyectos

-Prácticas de laboratorio

Desglose de evaluación

Evidencia	Descripción	Contenidos sílabo a evaluar	Aporte	Calificación	Semana
Evaluación escrita	Se evaluará los contenidos sobre el capítulo 1	CONTROLADORES PID	APORTE	6	Semana: 4 (11-0CT- 22 al 15-0CT-22)
Prácticas de laboratorio	Se evaluará las prácticas relacionada con el capítulo 1	CONTROLADORES PID	APORTE	4	Semana: 4 (11-OCT- 22 al 15-OCT-22)
Investigaciones	Se desarrollará una investigación relacionado con el capítulo 2	COMUNICACIONES INDUSTRIALES, INSTRUMENTACIÓN INDUSTRIAL	APORTE	3	Semana: 8 (07-NOV- 22 al 12-NOV-22)
Evaluación escrita	Se evaluará los contenidos sobre el capítulo 2 y la primera parte del capítulo 3	COMUNICACIONES INDUSTRIALES, INSTRUMENTACIÓN INDUSTRIAL	APORTE	4	Semana: 9 (14-NOV- 22 al 16-NOV-22)
Prácticas de laboratorio	Se evaluará las prácticas relacionadas con el capítulo 2 y la primera parte del capítulo 3	COMUNICACIONES INDUSTRIALES, INSTRUMENTACIÓN INDUSTRIAL	APORTE	3	Semana: 9 (14-NOV- 22 al 16-NOV-22)
Evaluación escrita	Se evaluará sobre la segunda parte del capítulo 3 y el capítulo 4	COMUNICACIONES INDUSTRIALES, SISTEMAS SCADA.	APORTE	6	Semana: 15 (al)
Prácticas de laboratorio	Se evaluará las prácticas sobre la segunda parte del capítulo 3 y el capítulo 4	COMUNICACIONES INDUSTRIALES, SISTEMAS SCADA.	APORTE	4	Semana: 15 (al)
Evaluación escrita	Se realizará sobre todos los contenidos analizados en el semestre	COMUNICACIONES INDUSTRIALES, CONTROLADORES PID, INSTRUMENTACIÓN INDUSTRIAL, SISTEMAS SCADA.	EXAMEN	10	Semana: 19-20 (22- 01-2023 al 28-01- 2023)
Proyectos	Se realizará un proyecto relacionada con toda la asignatura	COMUNICACIONES INDUSTRIALES, CONTROLADORES PID, INSTRUMENTACIÓN INDUSTRIAL, SISTEMAS SCADA.	EXAMEN	10	Semana: 19-20 (22- 01-2023 al 28-01- 2023)
Evaluación escrita	Se realizará una evaluación relacionada con todos los contenidos vistos en el semestre	COMUNICACIONES INDUSTRIALES, CONTROLADORES PID, INSTRUMENTACIÓN INDUSTRIAL, SISTEMAS SCADA.	SUPLETORIO	20	Semana: 20 (al)

Metodología

Descripción	Tipo horas

El estudiante para reforzar su conocimiento realizará diferentes ejercicios y simulaciones acordes a cada capítulo.

Para comprobar los procesos de control y las simulaciones analizados en clases, los estudiantes realizarán diferentes simulaciones y prácticas en laboratorio.

Autónomo

Métodos

- a) Método activo donde el alumno participará directamente al realizar diferentes simulaciones en MatLab
- b) Se aplicará el método deductivo puesto que se dará al estudiante diferentes simulaciones de sistemas realimentados donde el estudiante realizará sus respectivos análisis para la implementación de controladores PID, además, los estudiantes realizarán procesos de comunicación industrial y sistemas de control utilizando los PLCs Técnicas:
- a) Se utilizará una técnica expositiva para explicar el contenido de cada tema.
- b) Se aplicará la técnica de demostración ya que el alumno realizará las prácticas y simulaciones con sus informes respectivos al finalizar cada capítulo.

Total docencia

Descripción

Tipo horas

Por medio de la resolución de ejercicios en clases con sus respectivas simulaciones se realizará la evaluación de las diferentes tareas realizadas por los estudiantes al final de cada capítulo

Autónomo

La evaluación de las prácticas de laboratorio estará enfocado al funcionamiento y simulación de cada ejercicio de laboratorio como también a los informes que realicen cada estudiante, el mismo, que deben estar acordes al formato que se indicará al inicio de clases

- 1.- Las evaluaciones se realizarán de acuerdo a la programación del curso y versará sobre los siguientes aspectos:
- Total docencia
- a) La evaluación escrita se orientará a la resolución de problemas como a diferentes conceptos teóricos.
- b) Las prácticas de laboratorio estará enfocado al funcionamiento y simulación de cada ejercicio de laboratorio como también a los informes que realicen cada estudiante, el mismo, que deben estar acordes al formato que se indicará al inicio de clases.
- 2.- La prueba escrita se realizará por medio de ejercicios, simulaciones y conceptos teóricos sobre todos los contenidos vistos durante el semestre.
- 3.- Dentro de la evaluación general se realizarán diferentes ejercicios simulaciones como actividades en clases.
- 4.- En la calificación de las diferentes evaluaciones escritas, trabajos en clases, prácticas de laboratorio se tendrá en cuenta la honestidad y el porte personal

6. Referencias

Bibliografía base

Libros

Autor	Editorial	Título	Año	ISBN
KATSUHIKO OGATA	Pearson	INGENIERÍA DE CONTROL MODERNO	2010	978-84-8322-660-5

Web

Software

Revista

Bibliografía de apoyo

Libros

Autor	Editorial	Título	Año	ISBN
William L. Brogan	Prentice Hall	Moder Control Theory	1991	
Chi-TsongChen	Oxford University Press	Linear System Theory and Desing	1999	
Benjamín C. Kuo ; Guillermo Aranda Pérez	México : Pearson	Sistema de control automático	1996	978-968-88072-3-1
Aquilino Rodríguez Penín	Marcombo	Sistemas ESCADA	2007	978-84-267-1450-3
Aquilino Rodríguez Penín	Marcombo	Comunicaciones industriales Guía Práctica	2008	10:84-267-1510-9

Web

Autor	Título	Url
Manuel-Alonso Castro Gil -	Comunicaciones industriales: principios	https://elibro.net/es/lc/uazuay/titulos/48530
Francisco Mur Pérez	básicos	
Manuel-Alonso Castro Gil	Comunicaciones industriales: sistemas	https://elibro.net/es/lc/uazuay/titulos/4853
	distribuidos y aplicaciones 1	

Software

Autor	Título	Url	Versión
MathWorks	MatLab y Simulink		2020

Estado:

Aprobado

Docente	Director/Junta
Fecha aprobación: 09/09/2022	