Fecha aprobación: 04/03/2023

Nivel:

Distribución de horas.

FACULTAD DE CIENCIA Y TECNOLOGÍA ESCUELA DE INGENIERÍA DE PRODUCCIÓN

1. Datos generales

Materia: ANÁLISIS MATEMÁTICO II

Código: FCT201

Paralelo: A

Periodo: Marzo-2023 a Julio-2023

Profesor: CONTRERAS LOJANO DAVID RICARDO

Correo dcontreras@uazuay.edu.ec

electrónico:

Docencia	Práctico	Autór	Total horas	
		Sistemas de tutorías	Autónomo	
64	0	0	96	160

Prerrequisitos:

Código: FCT101 Materia: ANÁLISIS MATEMÁTICO I

2. Descripción y objetivos de la materia

En el capítulo 1, Aplicaciones de la derivada: rectas tangentes y normales, máximos y mínimos aplicados a la graficación de funciones, optimización y rapidez de variación. En el capítulo 2, Cálculo integral: integración por fórmulas básicas, la integral definida y el área entre curvas. En el capítulo 3, Técnicas de integración: integración por partes, integrales trigonométricas, integración por sustitución trigonométrica, integración por fracciones parciales e integración numérica.

Está asignatura se relaciona con Análisis Matemático I, Geometría y Trigonometría dictadas en el nivel anterior y sienta las bases para el estudio de Análisis Matemático III y IV, Física I y II, Álgebra Lineal y Estadística.

Análisis Matemático II es una cátedra que fortalece el razonamiento y las secuencias lógicas a base a desarrollar una gran cantidad de ejercicios de aplicación, que permitan al estudiante obtener las bases para poder resolver las diferentes aplicaciones físicas y mecánicas del cálculo integral de una variable, el cálculo infinitesimal de funciones de varias variables y las ecuaciones diferenciales.

3. Objetivos de Desarrollo Sostenible

4. Contenidos

01.01.	Aplicaciones a rectas tangentes y normales
01.02.	Teorema de L'Hopital
01.03.	Teorema de Rolle y teorema de Valor Medio. Funciones crecientes y decrecientes
01.04.	Valores máximos y mínimos relativos de una función. Concavidades y puntos de inflexión
01.05.	Graficación de funciones: polinomiales, racionales y algebraicas y con exponente fraccionario
01.06.	Prueba común Nº1
01.07.	Aplicaciones a problemas de optimización

01.08.	Aplicaciones a problemas de razón de cambio o rapidez de variación
02.01.	La diferencial y sus aplicaciones
02.02.	El método de Newton para la resolución de ecuaciones
02.03.	La antiderivada. Fórmulas básicas de antiderivación. Regla de la cadena
02.04.	Integración por fórmulas básicas: funciones exponenciales y trigonométricas
02.05.	Integración utilizando fórmulas que dan como resultado funciones trigonométricas inversas y logarítmicas
02.06.	Prueba común Nº2
02.07.	La integral definida y el teorema fundamental del cálculo integral
02.08.	Cálculo del área bajo una curva y el área entre curvas por integración
03.01.	Integración por partes
03.02.	Integrales trigonométricas
03.03.	Integración por sustitución trigonométrica
03.04.	Prueba común Nº3
03.05.	Integración por fracciones parciales
03.06.	Integración numérica: Reglas trapecial y de Simpson

5. Sistema de Evaluación

Resultado de aprendizaje de la carrera relacionados con la materia

Resultado de aprendizaje de la materia

Evidencias

INM. Desarrolla las ciencias de la ingeniería basados en fundamentos y modelos lógicos, matemáticos, físicos y químicos.

-Emplea el cálculo diferencial para graficar funciones y resolver modelos matemáticos.	-Evaluación escrita -Resolución de ejercicios, casos y otros
-Establece las fórmulas y técnicas para la integración de diferentes tipos de funciones.	-Evaluación escrita -Resolución de ejercicios, casos y otros
-Resuelve algunas aplicaciones físicas y geométricas.	-Evaluación escrita -Resolución de ejercicios, casos y otros

Desglose de evaluación

Evidencia	Descripción	Contenidos sílabo a evaluar	Aporte	Calificación	Semana
Resolución de ejercicios, casos y otros	Leccion de ejercicios enviados	Aplicaciones de la derivada	APORTE	3	Semana: 4 (03-ABR- 23 al 06-ABR-23)
Evaluación escrita	Prueba escrita	Aplicaciones de la derivada	APORTE	5	Semana: 5 (10-ABR- 23 al 15-ABR-23)
Resolución de ejercicios, casos y otros	Leccion sobre ejercicios enviados	Cálculo integral	APORTE	4	Semana: 9 (08-MAY- 23 al 13-MAY-23)
Evaluación escrita	Prueba escrita	Cálculo integral	APORTE	6	Semana: 10 (15-MAY- 23 al 20-MAY-23)
Resolución de ejercicios, casos y otros	Leccion sobre ejercicios enviados	Técnicas de Integración	APORTE	5	Semana: 13 (05-JUN- 23 al 10-JUN-23)
Evaluación escrita	Prueba escrita	Técnicas de Integración	APORTE	7	Semana: 14 (12-JUN- 23 al 17-JUN-23)
Evaluación escrita	Examen escrito	Aplicaciones de la derivada, Cálculo integral, Técnicas de Integración	EXAMEN	20	Semana: 17-18 (02- 07-2023 al 15-07- 2023)
Evaluación escrita	Examen supletorio escrito	Aplicaciones de la derivada, Cálculo integral, Técnicas de Integración	SUPLETORIO	20	Semana: 19 (al)

Descripción Tipo horas El aprendizaje del alumno se desarrolla mediante la asimilación de concepto, propiedades, reglas y procedimientos matemáticos que luego son aplicados a la Autónomo resolución de problemas teóricos que se aproximan a los problemas reales que el estudiante abordara en el ejercicio de su profesión. La estrategia metodológica que se propone consiste en la aplicación de los siguientes pasos: Exposición teórica del profesor sobre el tema el tema tratado. Resolución de problemas tipo por parte del profesor, problemas que requieren diferentes enfoques y con diversos grados de dificultad. Resolución de ejercicios y problemas individuales y en grupo por parte de los alumnos dentro de la clase, bajo la guía del profesor. Trabajos a ser desarrollados fuera de clase. Refuerzo por parte del profesor, conclusiones y recomendaciones. La metodología a utilizarse comienza haciendo mucho énfasis en la conceptualización teórica y los principios fundamentales, debidamente demostrados, así como también en Total docencia las diferentes aplicaciones ingenieriles y los modelos matemáticos. La estrategia planteada se desglosa en los siguientes pasos: Exposición teórica del tema por parte del profesor. Ejemplificación mediante la resolución de problemas tipo. Talleres de resolución de problemas. Tareas fuera del aula. Revisión de tareas y respuestas a preguntas planteadas por los estudiantes. Conclusiones por parte del docente. Criterios de evaluación Descripción Tipo horas En las pruebas escritas y en las sustentaciones se verificará si el estudiante capto apropiadamente el planteamiento de los ejercicios o problemas dados y, la pertinencia Autónomo o lógica de la estrategia matemática con la cual persigue solucionarlos. Luego se considera la correcta y rigurosa aplicación de los procedimientos matemáticos que se utilicen para arribar a un resultado. Se tomará en cuenta la coherencia del resultado obtenido y correspondiente interpretación. La capacidad de razonamiento se evaluará en cada una de las pruebas a través de la inclusión de preguntas que midan la destreza del estudiante en el desarrollo de procesos Total docencia lógicos. En la resolución de ejercicios se evaluará la correcta aplicación de los conceptos teóricos, así como el planteamiento lógico del modelo matemático para la solución del problema, los procesos aritméticos, algebráicos, geométricos y gráficos. Además se tomará en cuenta la lógica de la respuesta obtenida y su adecuada interpretación. En el examen final se incluirán los temas tratados en la última parte del curso, adicionalmente se escogerán temas correspondientes al resto de la materia. En todas las pruebas y trabajos que incluyan textos escritos, se evaluará la ortografía, la redacción y las unidades de cada una de las magnitudes. 6. Referencias Bibliografía base Libros **Autor Editorial** Título Año **ISBN** Mexicana 2005 Leithold, Louis. El Cálculo 7 ed. 970-613-182-5 McGraw Hill 978-607-15-0502-6 Cálculo. Trascendentes tempranas 2011 Zill, Dennis. McGraw-Hill Ayres, Mendelson 958-41-0131-5 2003 Cálculo Web Software

Bibliografía de apoyo Libros

Revista

Web		
Software		
Revista		
	Docente	 Director/Junta
Fecha aprobad	ción: 04/03/2023	

Aprobado

Estado: