Fecha aprobación: 20/02/2024

FACULTAD DE DISEÑO, ARQUITECTURA Y ARTE ESCUELA DE ARQUITECTURA

1. Datos generales

Materia: RESISTENCIA DE MATERIALES

Código: AQT403
Paralelo: A, B

Periodo: Marzo-2024 a Junio-2024

Profesor: BARRERA PEÑAFIEL LUIS ENRIQUE

Correo barrerap@uazuay.edu.ec

electrónico:

Nive	١٠	_
14140	١.	

Distribución de horas.

Docencia	Práctico	Autónomo: 96		Total horas
		Sistemas de tutorías	Autónomo	
64	0	32	64	160

Prerrequisitos:

Código: AQT303 Materia: ESTÁTICA

2. Descripción y objetivos de la materia

Esta materia pretende afianzar los conceptos básicos de la mecánica de sólidos deformables los cuales fueron introducidos en la materia "Estática", brinda las herramientas necesarias para analizar y resolver problemas relativos a análisis de armaduras, determinación de centros de gravedad y centroides, determinación del momento de inercia de una sección, radio de giro y módulo de sección, así como los esfuerzos internos, deformación simple, fuerza cortante y momento flector en vigas, y finalmente introduce a los conceptos para el análisis de deformaciones en vigas.

Dentro de las áreas del conocimiento necesarias para la formación de un Arquitecto, sin duda una de las partes fundamentales es la capacidad de abstracción de un problema real, la representación gráfica de un fenómeno físico y el planteamiento matemático de mismo. El arquitecto al ser un profesional técnico, necesita de la lógica matemática y de la comprensión del sentido físico de los fenómenos a los que están sujetos los cuerpos. La materia Resistencia de materiales, se establece principalmente como un elemento fundamental dentro de la cadena de "Estructuras", que tiene relación directa con los diferentes niveles del Taller de Creación y Diseño de Proyectos Arquitectónicos, se ocupa de preparar a los alumnos para establecer y plantear el sistema resistente y moldeador de un proyecto; articulándose adicionalmente, aunque de manera parcial, con la materia Tecnología y Producción.

La importancia de esta materia radica en la formación de criterios que faciliten la comprensión y el sentido común en el planteamiento de un sistema estructural resistente dentro del planteamiento y diseño de un proyecto arquitectónico; pero sobre todo entrena la mente del estudiante en el pensamiento racional, en el uso de la lógica, el orden y el rigor como herramientas de proyección y solución de problemas, además, a su vez, en un futuro cercano, posibilita la comunicación efectiva con otros profesionales de las ramas técnicas.

3. Objetivos de Desarrollo Sostenible

4. Contenidos

01.	ANALISIS ESTRUCTURAL
01.01.	Armaduras simples
01.02.	Método de los nodos
01.03.	Elementos de fuerza cero

01.04.	Metodos de las secciones
01.05.	Bastidores y máquinas
02.	CENTROS DE GRAVEDAD Y CENTROIDES
02.01.	Centro de gravedad, centro de masa y centroide de un cuerpo
02.02.	Centro de gravedad, centro de masa y centroide de un cuerpo compuesto
03.	MOMENTOS DE INERCIA
03.01.	Definicion de momento de inercia para un área
03.02.	Teorema de ejes paralelos
03.03.	Radio de giro de un área
03.04.	Momentos de inercia para secciones compuestas
04.	MECÁNICA DE SÓLIDOS DEFORMABLES
04.01.	Análisis de fuerzas internas.
04.02.	Esfuerzo simple.
04.03.	Esfuerzo cortante.
04.04.	Esfuerzo de contacto o aplastamiento.
05.	DEFORMACIÓN SIMPLE
05.01.	Diagrama de esfuerzo deformación
05.02.	Ley de Hooke
05.03.	Deformación Axial
05.04.	Relación de Poisson
05.05.	Elementos estaticamente indeterminados
06.	FUERZA CORTANTE Y MOMENTO FLECTOR
06.01.	Fuerza cortante y momento flector
06.02.	Interpretación de la fuerza cortante y momento flector
06.03.	Relación entre carga, fuerza cortante y momento flector
	!

5. Sistema de Evaluación

Resultado de aprendizaje de la carrera relacionados con la materia

Resultado de aprendizaje de la materia

Evidencias

ce. Plantea proyectos con conocimiento y manejo solvente de los materiales de construcción, la lógica constructiva y el comportamiento estructural.

-Comprende el funcionamiento de los sistemas portantes y sus procesos e implicaciones constructivas.

-Evaluación escrita

⁻Comprende los conceptos básicos de mecánica de sólidos deformables, y su -Evaluación escrita relación con el análisis de sistemas portantes en la arquitectura.

Desglose de evaluación

Evidencia	Descripción	Contenidos sílabo a evaluar	Aporte	Calificación	Semana
Evaluación escrita	Prueba escrita /7 Trabajo práctico /3	ANALISIS ESTRUCTURAL, CENTROS DE GRAVEDAD Y CENTROIDES	APORTE	10	Semana: 4 (18-MAR- 24 al 23-MAR-24)
Evaluación escrita	Trabajo práctico /4 Prueba escrita /6	MECÁNICA DE SÓLIDOS DEFORMABLES, MOMENTOS DE INERCIA	APORTE	10	Semana: 8 (15-ABR- 24 al 20-ABR-24)
Evaluación escrita	Trabajo práctico /4 Prueba escrita /6	DEFORMACIÓN SIMPLE, FUERZA CORTANTE Y MOMENTO FLECTOR	APORTE	10	Semana: 12 (13-MAY- 24 al 18-MAY-24)
Evaluación escrita	Examen Final	ANALISIS ESTRUCTURAL, CENTROS DE GRAVEDAD Y CENTROIDES, DEFORMACIÓN SIMPLE, FUERZA CORTANTE Y MOMENTO FLECTOR, MECÁNICA DE SÓLIDOS DEFORMABLES, MOMENTOS DE INERCIA	EXAMEN	20	Semana: 16 (10-JUN- 24 al 11-JUN-24)
Evaluación escrita	Examen supletorio	ANALISIS ESTRUCTURAL, CENTROS DE GRAVEDAD Y CENTROIDES, DEFORMACIÓN SIMPLE, FUERZA CORTANTE Y MOMENTO FLECTOR, MECÁNICA DE SÓLIDOS DEFORMABLES, MOMENTOS DE INERCIA	Supletorio	20	Semana: 19-20 (al)

Metodología

Descripción Tipo horas

El trabajo autónomo será muy importante, y consta en la resolución de ejercicios, desarrollo parcial de temas relativos a los contenidos, elaboración de pequeños proyectos y revisión bibliográfica.

Autónomo

Esta asignatura se llevará a través de clases expuestas en la pizarra, en las que se describen y se explican los temas, con sus correspondientes ejemplos y gráficos, para posteriormente resolver problemas de aplicación que sirvan como guía del procedimiento a seguir para la resolución de diferentes problemas. Cualquier tipo de inquietud o duda que planteen los estudiantes se aprovechará para enriquecer las explicaciones desarrolladas en clases, y aclarar cualquier incertidumbre que se perciba en general sobre un tema. Dentro de esta materia es importante la resolución de problemas, los mismos que serán en algunos casos motivos de trabajos y tareas, y en otros casos le lecciones y pruebas.

Total docencia

Criterios de evaluación

Descripción Tipo horas

El trabajo autónomo será muy importante, y consta en la resolución de ejercicios, desarrollo parcial de temas relativos a los contenidos, elaboración de pequeños proyectos y revisión bibliográfica.

Autónomo

Para la evaluación de esta asignatura, se considerará el grado de abstracción y comprensión en los problemas propuestos, el planteamiento gráfico del problema y el planteamiento matemático del mismo. De igual forma, se considerará el procedimiento de cálculo para encontrar la solución sin perder de vista la importancia que tiene el uso adecuado de unidades de medida y la respuesta que deberá ser entendida como resultado de un fenómeno físico, el mismo que tiene que demostrar coherencia y racionalización de las condiciones del problema.

Total docencia

6. Referencias

Bibliografía base

Libros

Autor	Editorial	Título	Año	ISBN
HIBBELER	Prentice Hall	MECÁNICA VECTORIAL PARA INGENIEROS: DINÁMICA	2010	978-6-07-442560-4
BEER - JOHNSTON	Mc. Graw Hill	MECÁNICA VECTORIAL PARA INGENIEROS: DINÁMICA	2010	NO INDICA
ANDREW PYTEL / FERDINAND L. SINGER.	OXFORD University Press	RESISTENCIA DE MATERIALES	2008	9789686356137

Web

Software				
Revista				
Bibliografía de Libros	e apoyo			
Web				
Software				
Revista				
_				
	Docente		Director/Junta	
Fecha aprob	ación: 20/02/2024			
Estado:	Aprobado			