Fecha aprobación: 19/02/2024

Nivel:

Distribución de horas.

FACULTAD DE CIENCIA Y TECNOLOGÍA ESCUELA DE INGENIERÍA ELECTRÓNICA

1. Datos generales

Materia: TEORÍA DE CONTROL MODERNO

Código: ELE0606

Paralelo: D

Periodo: Marzo-2024 a Junio-2024

Profesor: TORRES SALAMEA HUGO MARCELO

Correo htorres@uazuay.edu.ec

electrónico:

Bisiniboolori do Horda.				
Docencia	Práctico	Autónomo: 16		Total horas
		Sistemas de tutorías	Autónomo	
32	32		16	80

Prerrequisitos:

Código: ELE0501 Materia: SEÑALES Y SISTEMAS

2. Descripción y objetivos de la materia

En esta asignatura se caracteriza matemáticamente los sistemas, se analiza su estabilidad. Se estudian los diferentes sistemas de control para diferentes situaciones y se analiza la retroalimentación como elemento para obtener sistemas más robustos y estables. Se analizan diferentes aproximaciones para el análisis matemático del comportamiento de sistemas.

Teoría de Control Moderno es una asignatura que le provee al estudiante herramientas para la caracterización de sistemas en general y de control en específico. Utiliza muchos de los conocimientos adquiridos con anterioridad en la carrera y trata de dar una visión amplia del concepto de sistema para brindarle al futuro Ingeniero Electrónico una concepción amplia para caracterizarlos matemáticamente y los mecanismos para su análisis matemático.

La teoría de control es una disciplina multidisciplinaria. Cubre muchas ramas de la ciencia y del ingeniería por lo que para estudiarla se utilizan conceptos de física, matemática y otros, que han sido acumulados por el estudiante durante la carrera.

3. Objetivos de Desarrollo Sostenible

4. Contenidos

1	INTRODUCCI"N		
1.1	IntroducciÛn al Control Autom·tico de Procesos		
1.2	Ejemplos de sistemas de control		
1.3	Control de lazo Cerrado Vs. Control de lazo cerrado.		
1.4	Aplicaciones pr-cticas		
2	FUNDAMENTOS MATEM _I TICOS		
2.1	Conceptos sobre variables complejas		

2.2	Ecuaciones diferenciales
2.3	Transformada de Laplace, inversa y aplicaciones en soluciûn de ecuaciones diferenciales
2.4	Algebra Matricial
2.5	Forma matricial de las ecuaciones de estado
2.6	Ecuaciones diferenciales
2.7	La transformada z
2.8	Aplicaciones pr-cticas
3	funciones de transferencia, diagrama de bloque y gr _i ficos de flujo de se—al
3.1	Respuesta al impulso y funciÛn de transferencia de sistemas lineales
3.2	Diagrama de bloques
3.3	Estudio de los graficas de flujo de seÒal
3.4	Diagramas de estado
3.5	FunciÛn de transferencia de sistemas en tiempo discreto
3.6	Aplicaciones pr·cticas
4	MODELDO MATEM¡TICO DE SISTEMAS LINEALES
4.1	Modelado en el espacio de estados
4.2	RepresentaciÛn en el espacio de estado de sistemas din micos
4.3	Sistemas mec nicos
4.4	Sistemas elÈctricos
4.5	Sistemas de Nivel de lÌquidos
4.6	Sistemas tÈrmicos
4.7	LinealizaciÛn de sistemas no lineales
4.8	Amplificadores operacionales
4.9	Aplicaciones pr·cticas
5	analisis de la respuesta transitoria
5.1	Sistemas de primer orden
5.2	Sistemas de segundo orden
5.3	Aplicaciones pr·cticas
6	ACCIONES B¡SICAS DE CONTROL Y RESPUESTAS DE SISTEMAS DE CONTROL
6.1	Acciones b sicas de control
6.2	Efectos de las acciones de control integral y derivativa sobre el desempeòo de un sistemas
6.3	Sistemas de orden superior
6.4	Criterios de estabilidad de Routh
6.5	Tipos de controladores
7	AN¡LISIS DEL LUGAR GEOMTRICO DE LAS RAICES
7.1	Gr-fica del lugar geomètrico de las raices
7.2	Reglas generales para construir lugar geomètrico de las raices
7.3	An lais de sistemas de control mediante el lugar geomètrico de las raices
7.4	DiseÒo de control mediante el mètodo del lugar geomètrco de las raices
	Páging 2 do 4

7.5 Aplicaciones pr·cticas

5. Sistema de Evaluación

Resultado de aprendizaje de la carrera relacionados con la materia

Resultado de aprendizaje de la materia

Evidencias

. Analiza modelos matemáticos, físicos y estadísticos para la solución de problemas reales e hipotéticos en la ingeniería electrónica.

-El estudiante es capaz de desarrollar diferentes sistemas de control con	-Evaluación escrita
realimentación, mediante el empleo del Método del lugar geométrico de las	-Investigaciones
raíces	-Prácticas de laboratorio
-El estudiante es capaz de utilizar los herramientas matemáticas para modelar diferentes sistemas de control	-Evaluación escrita -Investigaciones -Prácticas de laboratorio

Desglose de evaluación

Evidencia	Descripción	Contenidos sílabo a evaluar	Aporte	Calificación	Semana
Evaluación escrita	Se evaluará sobre los capítulos 1 y 2	FUNDAMENTOS MATEM¡TICOS, INTRODUCCI"N	APORTE	6	Semana: 4 (18-MAR- 24 al 23-MAR-24)
Prácticas de laboratorio	Se evaluará las prácticas y los informes del capítulo 1 y 2	FUNDAMENTOS MATEM¡TICOS, INTRODUCCI"N	APORTE	4	Semana: 4 (18-MAR- 24 al 23-MAR-24)
Evaluación escrita	Se evaluará sobre los capítulos 3 y 4	FUNCIONES DE TRANSFERENCIA, DIAGRAMA DE BLOQUE Y GRIFICOS DE FLUJO DE SE—AL, MODELDO MATEMITICO DE SISTEMAS LINEALES	APORTE	4	Semana: 8 (15-ABR- 24 al 20-ABR-24)
Investigaciones	Se evaluará la sustentación y el informe de la investigación relacionado con el capítulo 4	MODELDO MATEMITICO DE SISTEMAS LINEALES	APORTE	3	Semana: 8 (15-ABR- 24 al 20-ABR-24)
Prácticas de laboratorio	Se evaluará las prácticas y los informes de los capítulos 3 y 4	FUNCIONES DE TRANSFERENCIA, DIAGRAMA DE BLOQUE Y GRIFICOS DE FLUJO DE SE—AL, MODELDO MATEMITICO DE SISTEMAS LINEALES	APORTE	3	Semana: 8 (15-ABR- 24 al 20-ABR-24)
Evaluación escrita	Se evaluará sobre los capítulos 5 y 6	ACCIONES B¡SICAS DE CONTROL Y RESPUESTAS DE SISTEMAS DE CONTROL, ANALISIS DE LA RESPUESTA TRANSITORIA	APORTE	6	Semana: 12 (13-MAY- 24 al 18-MAY-24)
Prácticas de Iaboratorio	Se evaluará las prácticas y los informes de los capítulos 5 y 6	ACCIONES B¡SICAS DE CONTROL Y RESPUESTAS DE SISTEMAS DE CONTROL, ANALISIS DE LA RESPUESTA TRANSITORIA	APORTE	4	Semana: 12 (13-MAY- 24 al 18-MAY-24)
Evaluación escrita	Sobre toda la asignatura	ACCIONES B¡SICAS DE CONTROL Y RESPUESTAS DE SISTEMAS DE CONTROL, ANALISIS DE LA RESPUESTA TRANSITORIA, AN¡LISIS DEL LUGAR GEOMTRICO DE LAS RAICES, FUNCIONES DE TRANSFERENCIA, DIAGRAMA DE BLOQUE Y GR¡FICOS DE FLUJO DE SE—AL, FUNDAMENTOS MATEM¡TICOS, INTRODUCCI"N, MODELDO MATEM¡TICO DE SISTEMAS LINEALES	EXAMEN	20	Semana: 16 (10-JUN- 24 al 11-JUN-24)
Evaluación escrita	Sobre toda la asignatura	ACCIONES B¡SICAS DE CONTROL Y RESPUESTAS DE SISTEMAS DE CONTROL, ANALISIS DE LA RESPUESTA TRANSITORIA, AN¡LISIS DEL LUGAR GEOMTRICO DE LAS RAICES, FUNCIONES DE TRANSFERENCIA, DIAGRAMA DE BLOQUE Y GR¡FICOS DE FLUJO DE SE—AL, FUNDAMENTOS MATEM¡TICOS, INTRODUCCI"N, MODELDO MATEM¡TICO DE SISTEMAS LINEALES	SUPLETORIO	20	Semana: 19-20 (al)

Descripción Tipo horas

La metodología utilizada para la enseñanza de la asignatura de teoría de control moderno será de manera activa aplicado el sistema de aula invertida donde los estudiantes estudien y preparen las lecciones fuera de clases para posteriormente con la ayuda del docente se refuerce los conocimientos; además, se desarrollará ejercicios y problemas, los mismos que permitirán profundizar y consolidar los conceptos adquiridos, luego de los temas analizados se pondrán en práctica, Los mismos, mediante la Elaboración de prácticas en el laboratorio, las mismas, que deberán culminar con los informes correspondientes, adicionalmente, se enviará investigaciones adicionales que permitan profundizar temas de interés específico para el desarrollo del estudiante, los mismos que podrán ser expuestos o presentados con un informe. Existirán temas específicos en los que se requiera efectuar simulaciones asistidas por computadora con el fin de que el estudiante se familiarice con este tipo de herramientas de diseño de ingeniería.

Autónomo

Total docencia

En la asignatura de teoría de control moderno se utilizará:

- a) Método activo donde el alumno participará directamente al resolver los problemas y proyectos.
- b) Se aplicará el método deductivo puesto que se dará al estudiante un ejercicio determinado y el realizará los cálculos correspondientes. Técnicas:
- a) Se utilizará una técnica expositiva para explicar el contenido de cada tema.
- b) Se aplicará la técnica de demostración ya que el alumno realizará las prácticas determinadas con sus informes respectivos al finalizar cada capítulo.

Criterios de evaluación

Descripción Tipo horas

a) Se realizará una evaluación de los ejercicios resueltos por los estudiantes en casa. b) Se evaluará las investigaciones que realicen los estudiantes relacionados con determinados capítulos, además se evaluará los informe de las diferentes simulaciones realizadas en MatLab.

Autónomo

Los estudiantes para cada aporte deberán entregar los informes donde se involucre los conocimientos adquiridos durante cada período de evaluación, el mismo, que se evaluará de forma individual.

Total docencia

Para la calificación global del aporte se tendrá en cuenta la prueba escrita, prácticas de laboratorio (simulaciones), trabajos en clases, en cada una de estas actividades se tendrá en cuenta la honestidad, el aporte personal, de tal manera de evitar el plagio y la copia, se considerará también la ortografía, redacción y puntualidad.

6. Referencias

Bibliografía base

Libros

Autor	Editorial	Título	Año	ISBN
OGATA	Prentice Hall	INGENIERIA DE CONTROL MODERNO	2010	9788483226605
BENJAMIN C KUO	Prentice Hall	SISTEMAS DE CONTROL AUTOMÁTICO	1996	DL: 978-968- 88072-3-1

Web

Software

Revista

Bibliografía de apoyo

Libros

Web

Autor	Título	Url	
Lucía Agud Albesa - Marío	a Matlab para matemáticas en ingenierías	https://elibro.net/es/ereader/uazuay/57407	
Leonor Pla Ferrando			
Ramón P. Ñeco García,	Apuntes de Sistemas de control	https://elibro.net/es/ereader/uazuay/62263	
Oscar Reinoso García			

Software

Autor	Título	Url	Versión	
MATHWORKS	matlab & Simulink		2015-2023	
Revista				

Docente Director/Junta

Fecha aprobación: 19/02/2024
Estado: Aprobado