Fecha aprobación: 30/01/2025

FACULTAD DE CIENCIA Y TECNOLOGÍA ESCUELA DE INGENIERÍA EN MINAS

1. Datos generales

Materia: DISEÑO DE PLANTAS DE BENEFICIO

Código: INI1002

Paralelo: A

Periodo: Febrero-2025 a Junio-2025

Profesor: VALENCIA GUARICELA FERNANDO TULIO

Correo fvalencia@uazuay.edu.ec

electrónico:

Distribución de horas.				
Docencia	Práctico	Autónomo: 32		Total horas
		Sistemas de tutorías	Autónomo	
32	16	16	16	80

10

Nivel:

Prerrequisitos:

Código: INI0902 Materia: METALURGIA EXTRACTIVA II

2. Descripción y objetivos de la materia

La materia profundiza en el entendimiento de procesos mineralúrgicos y metalúrgicos aplicados al diseño y dimensionamiento de plantas de beneficio.

Las materias complementarias abarcan: Química, Termodinámica, Mineralurgia, Metalurgia Extractiva I, Metalurgia Extractiva II

El ingeniero en minas con ejercicio en plantas metalúrgicas, de tratamiento de no metales, beneficio mineral y hasta tratamiento de aguas, manejará conceptos de diseño y dimensionamiento.

3. Objetivos de Desarrollo Sostenible

4. Contenidos

1	Circuitos de conminución
1.1	Enfoque general
1.2	Molienda semiautógena, modelo simplificado
1.3	Estimación de parámetros molienda SAG, relaciones de escalamiento
1.4	Ejemplos de aplicación molienda SAG
1.5	Circuitos convencionales de molienda y clasificación, simulación, criterios de optimización
1.6	Ejemplos de aplicación molienda convencional
2	Circuitos de clasificación
2.1	Modelos de clasificación con harneros, ejemplos de aplicación

2.2	Dimensionamiento de harneros		
2.3	Dimensionamiento de hidrociclones		
3	Circuitos de flotación, modelación matemática		
3.1	Test continuo y de planta piloto		
3.2	Cálculos de volumen de circuito y número de celdas		
3.3	Elección del tamaño de celda según capacidad de planta		
3.4	Circuito de flotación		
3.5	Tipos de celdas de flotación		
4	Cianuración		
4.2	Circuito de cianuración		
4.0999999999 999996	Cinética y termodinámica de la cianuración		
5	Diagramas de flujo		
5.1	Pulpas y uso de agua		
5.2	Balance de masa		
5.3	Balance de energía		

5. Sistema de Evaluación

Resultado de aprendizaje de la carrera relacionados con la materia

Resultado de aprendizaje de la materia

Evidencias

d3. Emplea modelos, métodos de análisis y software especializado, aplicables al diseño del proyecto.

-¿ Dimensiona y diseña los elementos y co metalúrgicas.	emponentes de plantas -Evaluación escrita -Resolución de ejercicios, casos y otros
-¿ Modeliza los procesos involucrados en metalurgia.	ratamiento mineral y -Evaluación escrita -Resolución de ejercicios, casos y otros
-¿ Propone flujogramas de procesos de a	orovechamiento mineroEvaluación escrita -Resolución de ejercicios, casos y otros

Desglose de evaluación

Evidencia	Descripción	Contenidos sílabo a evaluar	Aporte	Calificación	Semana
Evaluación escrita	Evaluación escrita práctica	Circuitos de conminución	APORTE	6	Semana: 4 (10/03/2025 al 15/03/2025)
Resolución de ejercicios, casos y otros	Taller de resolución de ejercicios	Circuitos de conminución	APORTE	4	Semana: 4 (10/03/2025 al 15/03/2025)
Evaluación escrita	Evaluación escrita práctica	Circuitos de clasificación, Circuitos de conminución	APORTE	6	Semana: 8 (07/04/2025 al 12/04/2025)
Resolución de ejercicios, casos y otros	Taller de resolución de ejercicios	Circuitos de clasificación, Circuitos de conminución, Circuitos de flotación, modelación matemática	APORTE	4	Semana: 8 (07/04/2025 al 12/04/2025)
Evaluación escrita	Evaluación escrita práctica	Cianuración, Circuitos de clasificación, Circuitos de conminución, Circuitos de flotación, modelación matemática	APORTE	6	Semana: 12 (05/05/2025 al 10/05/2025)
Resolución de ejercicios, casos y otros	Taller de resolución de ejercicios	Cianuración, Circuitos de clasificación, Circuitos de conminución, Circuitos de flotación, modelación matemática	APORTE	4	Semana: 12 (05/05/2025 al 10/05/2025)
Evaluación escrita	Evaluación escrita práctica	Cianuración, Circuitos de clasificación, Circuitos de conminución, Circuitos de flotación, modelación matemática, Diagramas de flujo	EXAMEN	20	Semana: 16 (02/06/2025 al 07/06/2025)
Evaluación escrita	Evaluación escrita práctica	Cianuración, Circuitos de clasificación, Circuitos de conminución, Circuitos de flotación, modelación matemática, Diagramas de flujo	SUPLETORIO	20	Semana: 19-20 (al)

Metodología

Descripción Tipo horas

El objetivo es que los estudiantes desarrollen habilidades para la autogestión del conocimiento. A través del aprendizaje autónomo, se espera que los estudiantes refuercen los conceptos abordados en clase, profundicen en temas específicos y apliquen metodologías en escenarios reales.

Estrategias de Aprendizaje Autónomo

Los estudiantes trabajarán de forma autónoma en ejercicios que simulan casos reales de minería, Se propondrán ejercicios aplicados sobre:

- Selección y dimensionamiento de equipos.
- Balance metalúrgico.
- Balance de energía.

La materia se desarrollará mediante clases expositivas con apoyo audiovisual y el desarrollo de casos de estudio en dimensionamiento de equipos, balance de masa y energía.

Total docencia

Autónomo

Criterios de evaluación

Descripción Tipo horas

El desempeño en el aprendizaje autónomo, donde se mide la capacidad de investigación, análisis independiente y resolución de talleres considerará:

Autónomo

- Consecución de objetivos
- Resolución de ejercicios autónomos
- Ensayos o resúmenes críticos

La evaluación se realizará en base a pruebas de reactivos, las tareas enviadas, y las prácticas de laboratorio a realizar. Se considerará para las tareas e informes en general:

Total docencia

- Cumplimiento de objetivos.
- Estructura de informe.
- Calidad de investigación.
- Calidad de redacción y síntesis.

6. Referencias Bibliografía base

Libros

Autor	Editorial	Título	Año	ISBN
Martínez P	UNIVERSIDAD POLITÉCNICA DE CARTAGENA	PLANTAS DE TRATAMIENTO DE RECURSOS MINERALES	2018	
Web				
Software				
Revista				
Bibliografía de apoyo Libros				
Web				
Software				
Revista				
Doc	cente		Director/	Junta

Fecha aprobación: 30/01/2025 Estado: Aprobado