Fecha aprobación: 27/02/2018

Nivel:

FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN ESCUELA INGENIERIA DE SISTEMAS Y TELEMATICA

1. Datos generales

Materia: ELECTROTÉCNIA

Código: FAD0187

Paralelo: A

Periodo: Marzo-2018 a Julio-2018

Profesor: MÉNDEZ RENGEL SIMÓN BOLÍVAR

Correo bmendez@uazuay.edu.ec

electrónico:

Distribuci	on de noi	ras.		
Docencia	Práctico	Autór	nomo:	Total horas
		Sistemas de tutorías	Autónomo	

Prerrequisitos:

Código: FAD0182 Materia: FÍSICA II

2. Descripción y objetivos de la materia

En esta asignatura se estudia los principios del electromagnetismo, transformadores, estructura, principio de funcionamiento y características de las máquinas eléctricas de corriente continua y alterna de baja potencia, con sus respectivos circuitos característicos. También se estudia los circuitos de mando y potencia para el control de motores eléctricos.

En la asignatura de Electrotecnia, el estudiante de la carrera de Ingeniería de Sistemas y Telemática, desarrolla la habilidad de manejar conocimientos teóricos y prácticos para analizar los fenómenos eléctricos y electromagnéticos que se requieren para entender el principio de funcionamiento y características de las máquinas eléctricas y los circuitos de control y potencia.

Los alumnos desarrollan un proyecto final, en el que aplican la teoría básica de la electricidad, magnetismo, electromagnetismo, componentes eléctricos y electrónicos, presentando una fuente de voltaje dentro de una caja, la misma que servirá de apoyo para las asignaturas de Electrónica Digital y Electrónica Analógica, que son prerrequisitos para las asignaturas de Arquitectura de Computadores, Microcontroladores y Proyectos Telemáticos, de la carrera de Ingeniería de Sistemas y Telemática.

3. Objetivos de Desarrollo Sostenible

4. Contenidos

7. COITIC	illaos
1.01.	Magnetismo, campos magnéticos y teoría moderna del Magnetismo
1.02.	Densidad de Flujo y permeabilidad
1.03.	Campo magnético y corriente eléctrica
1.04.	Fuerzas en una carga en movimiento y en un alambre circulado por corriente
1.05.	Campos magnéticos por diversos elementos circulados por corriente
1.06.	Histéresis
1.07.	Fuerzas y momentos de torsión.
1.08.	Instrumentos de medidas eléctricas
1.09.1.	Ley de Faraday
1.09.2.	Fuerza electromotriz (fem) inducida por un conductor en movimiento

1.09.3.	Ley de Lenz y regla de Fleming
2.01.	Clasificación de las máquinas eléctricas rotativas.
2.02.1.	Generador con excitación independiente.
2.02.2.	Generador en derivación (o shunt)
2.02.3.	Generador compuesto
2.02.4.	Construcción de generadores de corriente directa
2.03.1.	Motor en derivación (o shunt), bajo carga
2.03.2.	Motor de cd en serie
2.03.3.	Motor de cd compuesto.
2.03.4.	Inversión de la dirección de rotación
2.03.5.	Arranque, frenado y control de velocidad de un motor de cd.
3.01.	El transformador ideal
3.02.	Transformadores prácticos
3.03.	Circuito equivalente de un transformador práctico
3.04.	Construcción de un transformador de potencia
3.05.	Transformador y el autotransformador
3.06.	Transformadores de corriente y de alta frecuencia
3.07.	Propiedades básicas de los bancos de transformadores trifásicos
3.08.	Conexiones de los transformadores trifásicos
4.01.	Eficiencia y calentamiento de las máquinas eléctricas.
4.02.	Potencia, activa, reactiva y aparente.
4.03.	Circuitos trifásicos.
4.04.	Funcionamiento de los motores asíncronos trifásicos
4.05.	Motor asíncrono trifásico de rotor en jaula de ardilla
4.06.	Motor asíncrono de rotor bobinado y anillos rasantes
4.07.	Circuito equivalente del motor de inducción
4.08.	Generadores síncronos
4.09.	Motores síncronos
4.10.	Motores monofásicos
4.11.	Motores de velocidad gradual o de pasos
4.12.	Fundamentos de control electromecánico de motores eléctricos

5. Sistema de Evaluación

Resultado de aprendizaje de la carrera relacionados con la materia Resultado de aprendizaje de la materia

au. Conoce y aplica los fundamentos de la telemática.

Evidencias

-Conocer y aplicar la estructura mínima de un documento del informe de un proyecto y prácticas de laboratorio	-Evaluación escrita -Prácticas de laboratorio -Resolución de ejercicios, casos y otros -Trabajos prácticos - productos
-Conocer y experimentar el fenómeno de generación del magnetismo y electromagnetismo con base en las leyes y principios que lo rigen	-Evaluación escrita -Prácticas de laboratorio -Resolución de ejercicios,

Resultado de aprendizaje de la carrera relacionados con la materia Resultado de aprendizaje de la materia

_			
Ev	Or	\sim	C

	-Trabajos prácticos - productos
-Describir y explicar los principios de funcionamiento de máquinas eléctricas tales como: transformadores, motores de corriente continua y de corriente alterna asíncronos trifásicos y monofásicos	-Evaluación escrita -Prácticas de laboratorio -Resolución de ejercicios, casos y otros -Trabajos prácticos -

-Simular circuitos eléctricos representativos en el laboratorio virtual de electrónica (Proteus, MultiSim, ó CadeSimu)

-Evaluación escrita -Prácticas de laboratorio

-Resolución de ejercicios, casos y otros

-Trabajos prácticos productos

productos

Desglose de evaluación

Evidencia	Descripción	Contenidos sílabo a evaluar	Aporte	Calificación	Semana
Evaluación escrita	Exámenes para el Aporte 1	MAGNETISMO, CAMPOS MAGNETICOS Y ELECTROMAGNETISMO	APORTE 1	5	Semana: 4 (02-ABR- 18 al 07-ABR-18)
Prácticas de laboratorio	Informes de prácticas para el Aporte 1	MAGNETISMO, CAMPOS MAGNETICOS Y ELECTROMAGNETISMO	APORTE 1	4	Semana: 4 (02-ABR- 18 al 07-ABR-18)
Resolución de ejercicios, casos y otros	Tareas para el Aporte 1	MAGNETISMO, CAMPOS MAGNETICOS Y ELECTROMAGNETISMO	APORTE 1	1	Semana: 4 (02-ABR- 18 al 07-ABR-18)
Resolución de ejercicios, casos y otros	Tareas para el Aporte 2	maquinas de corriente directa, transformadores	APORTE 2	1	Semana: 8 (01-MAY- 18 al 05-MAY-18)
Evaluación escrita	Exámenes para el Aporte 2	MAQUINAS DE CORRIENTE DIRECTA, TRANSFORMADORES	APORTE 2	5	Semana: 9 (07-MAY- 18 al 09-MAY-18)
Prácticas de laboratorio	Informes de prácticas para el Aporte 2	MAQUINAS DE CORRIENTE DIRECTA, TRANSFORMADORES	APORTE 2	4	Semana: 9 (07-MAY- 18 al 09-MAY-18)
Resolución de ejercicios, casos y otros	Tareas para el Aporte 3	MAQUINAS DE CORRIENTE ALTERNA, TRANSFORMADORES	APORTE 3	1	Semana: 14 (11-JUN- 18 al 16-JUN-18)
Evaluación escrita	Exámenes para el Aporte 3	MAQUINAS DE CORRIENTE ALTERNA, TRANSFORMADORES	APORTE 3	5	Semana: 15 (18-JUN- 18 al 23-JUN-18)
Prácticas de laboratorio	Informes de prácticas para el Aporte 3	MAQUINAS DE CORRIENTE ALTERNA, TRANSFORMADORES	APORTE 3	4	Semana: 15 (18-JUN- 18 al 23-JUN-18)
Evaluación escrita	Exámenes finales	MAGNETISMO, CAMPOS MAGNETICOS Y ELECTROMAGNETISMO, MAQUINAS DE CORRIENTE ALTERNA, MAQUINAS DE CORRIENTE DIRECTA, TRANSFORMADORES	EXAMEN	12	Semana: 17-18 (01- 07-2018 al 14-07- 2018)
Trabajos prácticos - productos	Informe del proyecto final	MAGNETISMO, CAMPOS MAGNETICOS Y ELECTROMAGNETISMO, MAQUINAS DE CORRIENTE ALTERNA, MAQUINAS DE CORRIENTE DIRECTA, TRANSFORMADORES	EXAMEN	8	Semana: 17-18 (01- 07-2018 al 14-07- 2018)
Evaluación escrita	Exámenes de suspensión	MAGNETISMO, CAMPOS MAGNETICOS Y ELECTROMAGNETISMO, MAQUINAS DE CORRIENTE ALTERNA, MAQUINAS DE CORRIENTE DIRECTA, TRANSFORMADORES	SUPLETORIO	20	Semana: 20 (al)

Metodología

Criterios de evaluación

6. Referencias

Bibliografía base

Libros

Autor	Editorial	Título	Año	ISBN	
Pabo Alcalde	Thomson	Electrotecnia	2004		
Theodore Wildi	Pearson - Prentice Hall	Máquinas Eléctricas y Sistemas de Potencia	2007		
Paúl E. Tippens	McGraw-Hill	Física, Conceptos y aplicaciones	2007		

Web

Software

Revista

Bibliografía de apoyo

Libros

Autor	Editorial	Título	Año	ISBN
José L. Durán, J	uan Gamis Marcombo	Electrotecnia	2012	978-84-26715-67-8
Pablo Alcalde S	San Miguel Paraninfo	Electrotecnia	2014	978-84-283-9877-0

Web

Autor	Título	Url
Slideshare	Máquinas eléctricas rotativas	www.slideshare.net/licf15/maquinas-electricas-rotativas
McGraw Hill	Motores eléctricos	http://www.mcgraw-hill.es/bcv/guide/capitulo/8448173104
Lladonosa Giró, Vicent	http://site.ebrary.com	http://site.ebrary.com/lib/uasuaysp/docDetail.action

Software

Título	Url	Versión
Proteus (ISIS - PROTEUS)		8.5
MultiSim- estudiantil		14
F	Proteus (ISIS - PROTEUS)	Proteus (ISIS - PROTEUS)

Revista

Docente Director/Junta

Fecha aprobación: **27/02/2018**Estado: **Aprobado**