Fecha aprobación: 13/03/2018

Nivel:

Distribución de horas.

FACULTAD DE CIENCIA Y TECNOLOGÍA ESCUELA DE INGENIERÍA MECÁNICA

1. Datos generales

Materia: FÍSICA II PARA IMA (6 CREDITOS) PENSUM 200

Código: CTE0390

Paralelo: G

Periodo: Marzo-2018 a Julio-2018

Profesor: MONTERO IZQUIERDO IVAN ANDRES

Correo andresmontero@uazuay.edu.ec

electrónico:

Docencia	Práctico	Autónomo:		Total horas
		Sistemas de tutorías	Autónomo	
,				,

Prerrequisitos:

Código: CTE0110 Materia: FÍSICA I

2. Descripción y objetivos de la materia

Analiza y aplica las relaciones existentes entre las diferentes leyes como se puede observar dentro de la Energía, Fluidos, Calor y Ondas. Permite utilizar los conceptos teóricos mediante demostraciones prácticas, comprobando con los resultados obtenidos la veracidad de sus principios.

Esta asignatura es de gran importancia porque ayudará al estudiante a comprender las bases sobre la cual está cimentada la ciencia y tecnología actual en el mundo. Pertenece al campo disciplinar de las ciencias experimentales, están dirigidas a consolidar los métodos y procedimientos de estas ciencias para la resolución de problemas cotidianos y para la comprensión racional de su entorno. Los estudiantes que hayan logrado estas competencias podrán desarrollar estructuras de pensamientos así como de procesos aplicables a los diversos contextos a lo largo de su vida, su aplicación favorece acciones responsables y fundadas por parte de los alumnos hacia su medio ambiente y naturalmente hacia sí mismos.

En la carrera le servirá para analizar, formular y aplicar la mecánica de Newton para comprender los principios y leyes de la Estática y la Dinámica de los fluidos con criterio técnico y científico, dirigiendo las aplicaciones en los diferentes problemas que se presenten en las actividades inherentes a la ingenieria mecánica automotriz.

3. Objetivos de Desarrollo Sostenible

4. Contenidos

	or idea
1.1.	Trabajo, Definición Unidades y Relaciones
1.2.	Energía, definición, Unidades, Energías Potencial y Cinética
1.3.	Potencia Media e Instantánea, Fuerzas Conservativas
1.4.	Trabajo y Energía Cinética, Trabajo y Energía Potencial
1.5.	Energía Potencial Elástica de un Resorte
1.6.	Leyes de Conservación de la Energía. Aplicaciones. Potencia.
2.1.	Hidrostática Densidad, Peso específico
2.2.	Presión, Principio de Pascal, Prensa hidráulica, Vasos comunicantes
2.3.	Manómetros y barómetros

2.4.	Principio de Arquímedes, Aplicaciones
2.4.	Trincipio de Arquiniedes, Aplicaciones
2.5.	Hidrodinámica Flujo laminar, turbulento, Gasto definiciones
2.6.	Presión y Velocidad Ecuación de Continuidad
2.7.	Ecuación de Bernoulli, Aplicaciones
2.8.	Teorema de Torricelli, Medidor de Venturi
3.1.	Temperatura y energía térmica, medición de la temperatura Escalas de temperatura, relativas y absolutas, Transformaciones entre escalas
3.2.	Dilatación Definición, dilataciones lineal, superficial y cúbica, ecuaciones, Aplicaciones
3.3.	Dilatación de los líquidos, Dilatación anómala del agua
3.4.	Variación de la densidad con la temperatura
3.5.	Calor Definición Equivalente mecánico del calor Cantidad de calor
3.6.	Calorimetría Calor específico, Medición del calor
3.7.	Cambios de estado o fase Sólido, líquido, gaseoso, el estado de plasma, Condensado de Bose-Einstein
3.8.	Calorimetría con cambios de fase
4.1.	Transferencia de calor por Conducción Ecuación y aplicaciones
4.2.	Transferencia de calor por Convección Ecuación y aplicaciones
4.3.	Transferencia de calor por Radiación Ley de Stefan-Boltzman, Ley de Prevost de intercambio de calor.
5.1.	Movimiento armónico simple: Fuerza recuperadora, Ecuaciones del movimiento armónico simple, energéticas en el movimiento armónico, Péndulo simple
5.2.	Movimiento ondulatorio: Ondas transversales en una cuerda, Ondas longitudinales, Ecuación de una onda. Tren de ondas.
5.3.	Velocidad de propagación de una onda en diferentes medios, Vibración de cuerdas y columnas de aire, Principio de superposición

5. Sistema de Evaluación

Resultado de aprendizaje de la carrera relacionados con la materia

Resultado de aprendizaje de la materia

Evidencias

aa. Verifica los valores de las variables consideradas en una actividad específica en componentes y sistemas automotrices para la resolución de problemas.

	-Evaluación escrita
-Conocer los principios de Temperatura, Calor y Movimiento Ondulatorio para indicar la utilidad en el campo automotriz.	-Prácticas de laboratorio -Reactivos -Resolución de ejercicios, casos y otros
-Interpretar el concepto de Energía, Trabajo Potencia y Mecánica de Fluidos para considerar su utilidad en el campo automotriz.	-Evaluación escrita -Prácticas de laboratorio -Reactivos -Resolución de ejercicios, casos y otros
-Interpretar el concepto de Energía, Trabajo Potencia y Mecánica de Fluidos para considerar su utilidad en el campo automotriz. ab. Analiza y/ o valida sistemas y subsistemas del vehículo a través de modelos matemátic	-Evaluación escrita -Prácticas de laboratorio -Reactivos -Resolución de ejercicios, casos y otros
· · · · · · · · · · · · · · · · · · ·	
	E 1 '/ 'I
-Analizar ejercicios en los cuales se aplica Temperatura y Calor para validar la aplicación en componentes o sistemas automotrices.	-Evaluación escrita -Prácticas de laboratorio -Reactivos -Resolución de ejercicios, casos y otros
	-Prácticas de laboratorio -Reactivos -Resolución de ejercicios, casos y otros

Resultado de aprendizaje de la carrera relacionados con la materia Resultado de aprendizaje de la materia

Evidencias

ad. Solucio	-Resolver ejercicios en los cuales se aplica Mecánica de Fluidos para determinar la aplicación en componentes o sistemas automotrices. na las averías detectadas en los componentes y sistemas del automotor, en bas	-Evaluación escrita -Prácticas de laboratorio -Reactivos -Resolución de ejercicios, casos y otros e al análisis lógico-
	seleccionando la opción más adecuada.	0.11
	-Aplicar los parámetros de Temperatura, Calor y Movimiento Ondulatorio para interpretar posibles fallos en componentes y sistemas del automotor.	-Evaluación escrita -Prácticas de laboratorio -Reactivos -Resolución de ejercicios, casos y otros
	-Utilizar los parámetros de Energía, Trabajo Potencia y Mecánica de Fluidos para deducir posibles fallos en componentes y sistemas del automotor.	-Evaluación escrita -Prácticas de laboratorio -Reactivos -Resolución de ejercicios, casos y otros

Desglose de evaluación

Evidencia	Descripción	Contenidos sílabo a evaluar	Aporte	Calificación	Semana
Evaluación escrita	Prueba		APORTE 1	4	Semana: 4 (02-ABR- 18 al 07-ABR-18)
Prácticas de laboratorio	Entrega de informe de laboratorio		APORTE 1	2	Semana: 4 (02-ABR- 18 al 07-ABR-18)
Resolución de ejercicios, casos y otros	Entrega de trabajos		APORTE 1	1	Semana: 4 (02-ABR- 18 al 07-ABR-18)
Evaluación escrita	Prueba		APORTE 2	6	Semana: 9 (07-MAY- 18 al 09-MAY-18)
Prácticas de laboratorio	Entrega de informe de laboratorio		APORTE 2	2	Semana: 9 (07-MAY- 18 al 09-MAY-18)
Resolución de ejercicios, casos y otros	Entrega de trabajos		APORTE 2	2	Semana: 9 (07-MAY- 18 al 09-MAY-18)
Reactivos	Prueba de reactivos		APORTE 3	4	Semana: 13 (04-JUN- 18 al 09-JUN-18)
Evaluación escrita	Preuba		APORTE 3	4	Semana: 15 (18-JUN- 18 al 23-JUN-18)
Prácticas de laboratorio	Entrega de informe de laboratorio		APORTE 3	2	Semana: 15 (18-JUN- 18 al 23-JUN-18)
Resolución de ejercicios, casos y otros	Entrega de trabajos		APORTE 3	3	Semana: 15 (18-JUN- 18 al 23-JUN-18)
Evaluación escrita	Examen final		EXAMEN	20	Semana: 17-18 (01- 07-2018 al 14-07- 2018)
Evaluación escrita	Examen supletorio		SUPLETORIO	20	Semana: 19 (al)

Metodología

Criterios de evaluación

6. Referencias

Bibliografía base

Libros

Autor	Editorial	Título	Año	ISBN	
Tippens, Paul E.,	Pearson Educación	"Física Universitaria	2009		
Sears, Francis W.;	Pearson Educación	Física Universitaria''	2009		
Zemansky, Mark W.					

Web

Software				
Revista				
Bibliografía de Libros	apoyo			
Web				
Software				
Revista				
_				
	Docente		Director/Junta	
Fecha aproba	ación: 13/03/2018			
Estado:	Aprobado			