Fecha aprobación: 05/10/2018

Nivel:

Distribución de horas.

FACULTAD DE CIENCIA Y TECNOLOGÍA ESCUELA DE INGENIERÍA MECÁNICA

1. Datos generales

Materia: FÍSICA II PARA IMA (6 CREDITOS) PENSUM 200

Código: CTE0390

Paralelo: F

Periodo: Septiembre-2018 a Febrero-2019
Profesor: MARTINEZ MOLINA MARIA SIMONE

Correo smartinez@uazuay.edu.ec

electrónico:

Docencia	Práctico	Autónomo:		Total horas
		Sistemas de tutorías	Autónomo	
,				,

Prerrequisitos:

Código: CTE0110 Materia: FÍSICA I

2. Descripción y objetivos de la materia

Analiza y aplica las relaciones existentes entre las diferentes leyes como se puede observar dentro de la Energía, Fluidos, Calor y Ondas. Permite utilizar los conceptos teóricos mediante demostraciones prácticas, comprobando con los resultados obtenidos la veracidad de sus principios.

Esta asignatura es de gran importancia porque ayudará al estudiante a comprender las bases sobre la cual está cimentada la ciencia y tecnología actual en el mundo. Pertenece al campo disciplinar de las ciencias experimentales, están dirigidas a consolidar los métodos y procedimientos de estas ciencias para la resolución de problemas cotidianos y para la comprensión racional de su entorno. Los estudiantes que hayan logrado estas competencias podrán desarrollar estructuras de pensamientos así como de procesos aplicables a los diversos contextos a lo largo de su vida, su aplicación favorece acciones responsables y fundadas por parte de los alumnos hacia su medio ambiente y naturalmente hacia sí mismos.

En la carrera le servirá para analizar, formular y aplicar la mecánica de Newton para comprender los principios y leyes de la Estática y la Dinámica de los fluidos con criterio técnico y científico, dirigiendo las aplicaciones en los diferentes problemas que se presenten en las actividades inherentes a la ingenieria mecánica automotriz.

3. Objetivos de Desarrollo Sostenible

4. Contenidos

1.1	Trabajo, Definición Unidades y Relaciones
1.2	Energía, definición, Unidades, Energías Potencial y Cinética
1.3	Trabajo y Energía Cinética, Trabajo y Energía Potencial
1.4	Energía Potencial Elástica de un Resorte
1.5	Leyes de Conservación de la Energía
1.6	Potencia
2.1	HidrostáticaDensidad, Peso especifico
2.2	Presión, Principio de Pascal, Prensa hidráulica, Vasos comunicantes
2.3	Manómetros y barómetros

2.4	Principio de Arquímedes, aplicaciones
2.5	Hidrodinámica Flujo laminar, turbulento, Gasto definiciones
2.6	Presión y Velocidad Ecuación de Continuidad
2.7	Ecuación de Bernoulli, Aplicaciones
2.8	Teorema de Torricelli, Medidor de Venturi
3.1	Temperatura y energía térmica, medición de la temperaturaEscalas de temperatura, relativas y absolutas, Transformaciones entre escalas
3.2	Dilatación Definición, dilataciones lineal, superficial y cubica, ecuaciones Aplicaciones
3.3	Dilatación de los líquidos, Dilatación anómala del agua
3.4	Variación de la densidad con la temperatura
3.5	Calor Definición Equivalente mecánico del calor Cantidad de calor
3.6	Calorimetría Calor especifico, Medición del calor
3.7	Cambios de estado o fase Solido, líquido, gaseoso, el estado de plasma, Condensado de Bose-Einstein
3.8	Calorimetría con cambios de fase
4.1	Transferencia de calor por Conducción Ecuación y aplicaciones
4.2	Transferencia de calor por Convección Ecuación y aplicaciones
4.3	Transferencia de calor por RadiaciónLey de Stefan-Boltzman, Ley de Prevost de intercambio de calor

5. Sistema de Evaluación

Resultado de aprendizaje de la carrera relacionados con la materia

Resultado de aprendizaje de la materia

Evidencias

aa. Verifica los valores de las variables consideradas en una actividad específica en componentes y sistemas automotrices para la resolución de problemas.

-Conocer los principios de Temperatura, Calor y Movimiento Ondulatorio para indicar la utilidad en el campo automotriz.	-Evaluación escrita -Prácticas de laboratorio -Resolución de ejercicios, casos y otros		
-Interpretar el concepto de Energía, Trabajo Potencia y Mecánica de Fluidos para considerar su utilidad en el campo automotriz.	-Evaluación escrita -Prácticas de laboratorio -Resolución de ejercicios, casos y otros		
-Interpretar el concepto de Energía, Trabajo Potencia y Mecánica de Fluidos para considerar su utilidad en el campo automotriz.	-Evaluación escrita -Prácticas de laboratorio -Resolución de ejercicios, casos y otros		
y/ o valida sistemas y subsistemas del vehículo a través de modelos matemáticos.			

ab. Analiza y

-Analizar ejercicios en los cuales se aplica Temperatura y Calor para validar la aplicación en componentes o sistemas automotrices.	-Evaluación escrita -Prácticas de laboratorio -Resolución de ejercicios, casos y otros
-Realizar ejercicios en los cuales se aplica Movimiento Ondulatorio para validar la aplicación en componentes o sistemas automotrices.	-Evaluación escrita -Prácticas de laboratorio -Resolución de ejercicios, casos y otros
-Realizar ejercicios en los cuales se aplica Trabajo, Potencia y Energía para validar la aplicación en componentes o sistemas automotrices.	-Evaluación escrita -Prácticas de laboratorio -Resolución de ejercicios, casos y otros
-Resolver ejercicios en los cuales se aplica Mecánica de Fluidos para determinar la aplicación en componentes o sistemas automotrices.	-Evaluación escrita -Prácticas de laboratorio -Resolución de ejercicios, casos y otros
ona las averías detectadas en los componentes y sistemas del automotor, en bas	e al análisis lógico-

ad. Solucion deductivo, seleccionando la opción más adecuada.

-Aplicar los parámetros de Temperatura, Calor y Movimiento Ondulatorio para interpretar posibles fallos en componentes y sistemas del automotor.	-Evaluación escrita -Prácticas de laboratorio -Resolución de ejercicios, casos y otros
-Utilizar los parámetros de Energía, Trabajo Potencia y Mecánica de Fluidos	-Evaluación escrita
para deducir posibles fallos en componentes y sistemas del automotor.	-Prácticas de laboratorio

Resultado de aprendizaje de la carrera relacionados con la materia Resultado de aprendizaje de la materia

Evidencias

-Resolución de ejercicios, casos y otros

Desglose de evaluación

Evidencia	Descripción	Contenidos sílabo a evaluar	Aporte	Calificación	Semana
Resolución de ejercicios, casos y otros	Aprendizaje basado en problemas	Energía, Trabajo y Potencia	APORTE 1	3	Semana: 5 (15-OCT- 18 al 20-OCT-18)
Evaluación escrita	Prueba	Energía, Trabajo y Potencia	APORTE 1	5	Semana: 6 (22-OCT- 18 al 27-OCT-18)
Prácticas de laboratorio	Puntuación que otorga el laboratorista	Energía, Trabajo y Potencia	APORTE 1	2	Semana: 6 (22-0CT- 18 al 27-0CT-18)
Resolución de ejercicios, casos y otros	ABP	Mecánica de los Fluidos, Temperatura y Calor	APORTE 2	3	Semana: 10 (19-NOV- 18 al 24-NOV-18)
Evaluación escrita	Prueba individual	Mecánica de los Fluidos, Temperatura y Calor	APORTE 2	5	Semana: 11 (26-NOV- 18 al 01-DIC-18)
Prácticas de laboratorio	Nota otorga el laboratorista con las prácticas	Mecánica de los Fluidos, Temperatura y Calor	APORTE 2	2	Semana: 11 (26-NOV- 18 al 01-DIC-18)
Prácticas de laboratorio	Calificación que otorga el laboratorista	Transferencia de calor y mecanismo de conducción	APORTE 3	2	Semana: 15 (al)
Resolución de ejercicios, casos y otros	ABP	Transferencia de calor y mecanismo de conducción	APORTE 3	3	Semana: 15 (al)
Evaluación escrita	Prueba individual	Transferencia de calor y mecanismo de conducción	APORTE 3	5	Semana: 16 (02-ENE- 19 al 05-ENE-19)
Evaluación escrita	Examen individual	Energía, Trabajo y Potencia, Mecánica de los Fluidos, Temperatura y Calor, Transferencia de calor y mecanismo de conducción	EXAMEN	20	Semana: 19-20 (20- 01-2019 al 26-01- 2019)
Evaluación escrita	Examen individual	Energía, Trabajo y Potencia, Mecánica de los Fluidos, Temperatura y Calor, Transferencia de calor y mecanismo de conducción	SUPLETORIO	20	Semana: 21 (al)

Metodología

Criterios de evaluación

6. Referencias

Bibliografía base

Libros

Autor	Editorial	Título	Año	ISBN	
Tippens, Paul E.,	Pearson Educación	"Física Universitaria	2009		
Sears, Francis W.; Zemansky, Mark W.	Pearson Educación	Física Universitaria''	2009		

Web

Software

Revista

Bibliografía de apoyo

Libros

Web		
Software		
Revista		
	Docente	Director/Junta
Fecha aprobac	sión: 05/10/2018	

Estado:

Aprobado